Contents

1 Introduction ... 1
 1.1 Motivating Examples .. 1
 1.2 Book Structure ... 4
 1.3 Useful Notation ... 9

2 Order Relations and Ordering Cones 11
 2.1 Order Relations ... 11
 2.2 Cone Properties Related to the Topology and the Order 17
 2.3 Convexity Notions for Sets and Set-Valued Maps 22
 2.4 Solution Concepts in Vector Optimization 28
 2.5 Vector Optimization Problems with Variable Ordering Structure ... 43
 2.6 Solution Concepts in Set-Valued Optimization 45
 2.6.1 Solution Concepts Based on Vector Approach 45
 2.6.2 Solution Concepts Based on Set Approach 48
 2.6.3 Solution Concepts Based on Lattice Structure 55
 2.6.4 The Embedding Approach by Kuroiwa 65
 2.6.5 Solution Concepts with Respect to Abstract Preference Relations ... 67
 2.6.6 Set-Valued Optimization Problems with Variable Ordering Structure ... 70
 2.6.7 Approximate Solutions of Set-Valued Optimization Problems ... 73
 2.7 Relationships Between Solution Concepts 74

3 Continuity and Differentiability .. 77
 3.1 Continuity Notions for Set-Valued Maps 77
 3.2 Continuity Properties of Set-Valued Maps Under Convexity Assumptions ... 90
 3.3 Lipschitz Properties for Single-Valued and Set-Valued Maps ... 96
 3.4 Clarke’s Normal Cone and Subdifferential 102
3.5 Limiting Cones and Generalized Differentiability

- Page 103

3.6 Approximate Cones and Generalized Differentiability

- Page 107

4 Tangent Cones and Tangent Sets

- Page 109

4.1 First-Order Tangent Cones

- **4.1.1 The Radial Tangent Cone and the Feasible Tangent Cone**
 - Page 110
- **4.1.2 The Contingent Cone and the Interiorly Contingent Cone**
 - Page 112
- **4.1.3 The Adjacent Cone and the Interiorly Adjacent Cone**
 - Page 120

4.2 Modified First-Order Tangent Cones

- **4.2.1 The Modified Radial and the Modified Feasible Tangent Cones**
 - Page 124
- **4.2.2 The Modified Contingent and the Modified Interiorly Contingent Cones**
 - Page 124
- **4.2.3 The Modified Adjacent and the Modified Interiorly Adjacent Cones**
 - Page 126

4.3 Miscellaneous Properties of First-Order Tangent Cones

- Page 129

4.4 First-Order Tangent Cones on Convex Sets

- **4.4.1 Connections Among First-Order Tangent Cones on Convex Sets**
 - Page 132
- **4.4.2 Properties of First-Order Tangent Cones on Convex Sets**
 - Page 137

4.5 First-Order Local Cone Approximation

- Page 143

4.6 Convex Subcones of the Contingent Cone

- Page 147

4.7 First-Order Inversion Theorems and Intersection Formulas

- Page 156

4.8 Expressions of the Contingent Cone on Some Constraint Sets

- Page 161

4.9 Second-Order Tangent Sets

- **4.9.1 Second-Order Radial Tangent Set and Second-Order Feasible Tangent Set**
 - Page 169
- **4.9.2 Second-Order Contingent Set and Second-Order Interiorly Contingent Set**
 - Page 170
- **4.9.3 Second-Order Adjacent Set and Second-Order Interiorly Adjacent Set**
 - Page 173

4.10 Generalized Second-Order Tangent Sets

- Page 175

4.11 Second-Order Asymptotic Tangent Cones

- **4.11.1 Second-Order Asymptotic Feasible Tangent Cone and Second-Order Asymptotic Radial Tangent Cone**
 - Page 181
- **4.11.2 Second-Order Asymptotic Contingent Cone and Second-Order Asymptotic Interiorly Contingent Cone**
 - Page 183
4.11.3 Second-Order Asymptotic Adjacent Cone and Second-Order Asymptotic Interiorly Adjacent Cone ... 185
4.12 Miscellaneous Properties of Second-Order Tangent Sets and Second-Order Asymptotic Tangent Cones 187
4.13 Second-Order Inversion Theorems .. 192
4.14 Expressions of the Second-Order Contingent Set on Specific Constraints ... 197
4.15 Miscellaneous Second-Order Tangent Cones 202
4.15.1 Second-Order Tangent Cones of Ledzewicz and Schaettler ... 202
4.15.2 Projective Tangent Cones of Second-Order 204
4.15.3 Second-Order Tangent Cone of N. Pavel 206
4.15.4 Connections Among the Second-Order Tangent Cones 207
4.16 Second-Order Local Approximation 207
4.17 Higher-Order Tangent Cones and Tangent Sets 210

5 Nonconvex Separation Theorems .. 213
5.1 Separating Functions and Examples 213
5.2 Nonlinear Separation ... 217
5.2.1 Construction of Scalarizing Functionals 217
5.2.2 Properties of Scalarization Functions 219
5.2.3 Continuity Properties .. 224
5.2.4 Lipschitz Properties ... 225
5.2.5 The Formula for the Conjugate and Subdifferential of φ_A for A Convex 231
5.3 Scalarizing Functionals by Hiriart-Urruty and Zaffaroni 232
5.4 Characterization of Solutions of Set-Valued Optimization Problems by Means of Nonlinear Scalarizing Functionals 236
5.4.1 An Extension of the Functional φ_A 236
5.4.2 Characterization of Solutions of Set-Valued Optimization Problems with Lower Set Less Order Relation \preceq_C^L by Scalarization 240
5.5 The Extremal Principle ... 244

6 Hahn-Banach Type Theorems ... 249
6.1 The Hahn–Banach–Kantorovich Theorem 250
6.2 Classical Separation Theorems for Convex Sets 258
6.3 The Core Convex Topology .. 261
6.4 Yang’s Generalization of the Hahn–Banach Theorem 264
6.5 A Sufficient Condition for the Convexity of \mathbb{R}_+A 271
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Conjugates and Subdifferentials</td>
<td>275-298</td>
</tr>
<tr>
<td>7.1</td>
<td>The Strong Conjugate and Subdifferential</td>
<td>275</td>
</tr>
<tr>
<td>7.2</td>
<td>The Weak Subdifferential</td>
<td>288</td>
</tr>
<tr>
<td>7.3</td>
<td>Subdifferentials Corresponding to Henig Proper Efficiency</td>
<td>296</td>
</tr>
<tr>
<td>7.4</td>
<td>Exact Formulas for the Subdifferential of the Sum and the Composition</td>
<td>298</td>
</tr>
<tr>
<td>8</td>
<td>Duality</td>
<td>307-345</td>
</tr>
<tr>
<td>8.1</td>
<td>Duality Assertions for Set-Valued Problems Based on Vector Approach</td>
<td>307-317</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Conjugate Duality for Set-Valued Problems Based on Vector Approach</td>
<td>308</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Lagrange Duality for Set-Valued Optimization Problems Based on Vector Approach</td>
<td>313</td>
</tr>
<tr>
<td>8.2</td>
<td>Duality Assertions for Set-Valued Problems Based on Set Approach</td>
<td>317</td>
</tr>
<tr>
<td>8.3</td>
<td>Duality Assertions for Set-Valued Problems Based on Lattice Structure</td>
<td>322</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Conjugate Duality for F-valued Problems</td>
<td>323</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Lagrange Duality for I-valued Problems</td>
<td>326</td>
</tr>
<tr>
<td>8.4</td>
<td>Comparison of Different Approaches to Duality in Set-Valued Optimization</td>
<td>338</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Lagrange Duality</td>
<td>339</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Subdifferentials and Stability</td>
<td>341</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Duality Statements with Operators as Dual Variables</td>
<td>345</td>
</tr>
<tr>
<td>9</td>
<td>Existence Results for Minimal Points</td>
<td>349-369</td>
</tr>
<tr>
<td>9.1</td>
<td>Preliminary Notions and Results Concerning Transitive Relations</td>
<td>349</td>
</tr>
<tr>
<td>9.2</td>
<td>Existence of Minimal Elements with Respect to Transitive Relations</td>
<td>352</td>
</tr>
<tr>
<td>9.3</td>
<td>Existence of Minimal Points with Respect to Cones</td>
<td>355</td>
</tr>
<tr>
<td>9.4</td>
<td>Types of Convex Cones and Compactness with Respect to Cones</td>
<td>360</td>
</tr>
<tr>
<td>9.5</td>
<td>Existence of Optimal Solutions for Vector and Set Optimization Problems</td>
<td>362</td>
</tr>
<tr>
<td>10</td>
<td>Ekeland Variational Principle</td>
<td>369-394</td>
</tr>
<tr>
<td>10.1</td>
<td>Preliminary Notions and Results</td>
<td>369</td>
</tr>
<tr>
<td>10.2</td>
<td>Minimal Points in Product Spaces</td>
<td>373</td>
</tr>
<tr>
<td>10.3</td>
<td>Minimal Points in Product Spaces of Isac–Tammer’s Type</td>
<td>381</td>
</tr>
<tr>
<td>10.4</td>
<td>Ekeland’s Variational Principles of Ha’s Type</td>
<td>384</td>
</tr>
<tr>
<td>10.5</td>
<td>Ekeland’s Variational Principle for Bi-Set-Valued Maps</td>
<td>390</td>
</tr>
<tr>
<td>10.6</td>
<td>EVP Type Results</td>
<td>391</td>
</tr>
<tr>
<td>10.7</td>
<td>Error Bounds</td>
<td>394</td>
</tr>
</tbody>
</table>
11 Derivatives and Epiderivatives of Set-Valued Maps .. 399
11.1 Contingent Derivatives of Set-Valued Maps ... 400
 11.1.1 Miscellaneous Graphical Derivatives of Set-valued Maps 407
 11.1.2 Convexity Characterization Using Contingent Derivatives 414
 11.1.3 Proto-Differentiability, Semi-Differentiability, and Related Concepts 416
 11.1.4 Weak Contingent Derivatives of Set-Valued Maps 422
 11.1.5 A Lyusternik-Type Theorem Using Contingent Derivatives 426
11.2 Calculus Rules for Derivatives of Set-Valued Maps 428
 11.2.1 Calculus Rules by a Direct Approach .. 429
 11.2.2 Derivative Rules by Using Calculus of Tangent Cones 432
11.3 Contingently C-Absorbing Maps .. 437
11.4 Epiderivatives of Set-Valued Maps .. 445
 11.4.1 Contingent Epiderivatives of Set-Valued Maps with Images in \mathbb{R} 446
 11.4.2 Contingent Epiderivatives in General Spaces 452
 11.4.3 Existence Theorems for Contingent Epiderivatives 457
 11.4.4 Variational Characterization of the Contingent Epiderivatives 464
11.5 Generalized Contingent Epiderivatives of Set-Valued Maps 470
 11.5.1 Existence Theorems for Generalized Contingent Epiderivatives 474
 11.5.2 Characterizations of Generalized Contingent Epiderivatives 478
11.6 Calculus Rules for Contingent Epiderivatives .. 482
11.7 Second-Order Derivatives of Set-Valued Maps ... 488
11.8 Calculus Rules for Second-Order Contingent Derivatives 500
11.9 Second-Order Epiderivatives of Set-Valued Maps 504
12 Optimality Conditions in Set-Valued Optimization 509
12.1 First-Order Optimality Conditions by the Direct Approach 512
12.2 First-Order Optimality Conditions by the Dubovitskii-Milyutin Approach 522
 12.2.1 Necessary Optimality Conditions by the Dubovitskii-Milyutin Approach 523
 12.2.2 Inverse Images and Subgradients of Set-Valued Maps 527
 12.2.3 Separation Theorems and the Dubovitskii-Milyutin Lemma 534
12.2.4 Lagrange Multiplier Rules
by the Dubovitskii-Milyutin Approach 537
12.3 Sufficient Optimality Conditions in Set-Valued Optimization 542
12.3.1 Sufficient Optimality Conditions Under
Convexity and Quasi-Convexity 542
12.3.2 Sufficient Optimality Conditions Under
Paraconvexity 545
12.3.3 Sufficient Optimality Conditions Under
Semidifferentiability 549
12.4 Second-Order Optimality Conditions in Set-Valued
Optimization .. 549
12.4.1 Second-Order Optimality Conditions
by the Dubovitskii-Milyutin Approach 550
12.4.2 Second-Order Optimality Conditions
by the Direct Approach 554
12.5 Generalized Dubovitskii-Milyutin Approach
in Set-Valued Optimization 557
12.5.1 A Separation Theorem for Multiple Closed
and Open Cones 559
12.5.2 First-Order Generalized
Dubovitskii-Milyutin Approach 562
12.5.3 Second-Order Generalized
Dubovitskii-Milyutin Approach 567
12.6 Set-Valued Optimization Problems with a Variable
Order Structure .. 568
12.7 Optimality Conditions for Q-Minimizers
in Set-Valued Optimization 572
12.7.1 Optimality Conditions for Q-Minimizers
Using Radial Derivatives 572
12.7.2 Optimality Conditions for Q-Minimizers
Using Coderivatives 574
12.8 Lagrange Multiplier Rules Based on Limiting Subdifferentiation ... 578
12.9 Necessary Conditions for Approximate Solutions
of Set-Valued Optimization Problems 591
12.10 Necessary and Sufficient Conditions for Solution
Concepts Based on Set Approach 594
12.11 Necessary Conditions for Solution Concepts
with Respect to a General Preference Relation 598
12.12 KKT-Points and Corresponding Stability Results 600

13 Sensitivity Analysis in Set-Valued Optimization
and Vector Variational Inequalities 605
13.1 First Order Sensitivity Analysis in Set-Valued Optimization 606
13.2 Second Order Sensitivity Analysis in Set-Valued
Optimization .. 613
13.3 Sensitivity Analysis in Set-Valued Optimization Using Coderivatives .. 623
13.4 Sensitivity Analysis for Vector Variational Inequalities 634

14 Numerical Methods for Solving Set-Valued Optimization Problems .. 645
14.1 A Newton Method for Set-Valued Maps 645
14.2 An Algorithm to Solve Polyhedral Convex Set-Valued Optimization Problems 651
14.2.1 Formulation of the Polyhedral Convex Set-Valued Optimization Problem .. 653
14.2.2 An Algorithm for Solving Polyhedral Convex Set-Valued Optimization Problems 655
14.2.3 Properties of the Algorithm 658

15 Applications .. 663
15.1 Set-Valued Approaches to Duality in Vector Optimization 663
15.1.1 Fenchel Duality for Vector Optimization Problems Using Corresponding Results for \(\mathcal{F} \)-Valued Problems .. 667
15.1.2 Lagrange Duality for Vector Optimization Problems Based on Results for \(\mathcal{F} \)-Valued Problems 670
15.1.3 Duality Assertions for Linear Vector Optimization Based on Lattice Approach 677
15.1.4 Further Set-Valued Approaches to Duality in Linear Vector Optimization 682
15.2 Applications in Mathematical Finance 696
15.3 Set-Valued Optimization in Welfare Economics 701
15.4 Robustness for Vector-Valued Optimization Problems 706
15.4.1 \(\leq^u \) -Robustness .. 710
15.4.2 \(\leq^c \) -Robustness .. 720
15.4.3 \(\leq^s \) -Robustness .. 722
15.4.4 Algorithms for Solving Special Classes of Set-Valued Optimization Problems 724

Appendix .. 727

References .. 733

Index .. 759
Set-valued Optimization
An Introduction with Applications
Khan, A.A.; Tammer, C.; Zălinescu, C.
2015, XXII, 765 p. 29 illus., Hardcover
ISBN: 978-3-642-54264-0