Contents

1 **Introduction** ... 1
 1.1 Motivating Examples ... 1
 1.2 Book Structure .. 4
 1.3 Useful Notation ... 9

2 **Order Relations and Ordering Cones** 11
 2.1 Order Relations .. 11
 2.2 Cone Properties Related to the Topology and the Order 17
 2.3 Convexity Notions for Sets and Set-Valued Maps 22
 2.4 Solution Concepts in Vector Optimization 28
 2.5 Vector Optimization Problems with Variable Ordering Structure ... 43
 2.6 Solution Concepts in Set-Valued Optimization 45
 2.6.1 Solution Concepts Based on Vector Approach 45
 2.6.2 Solution Concepts Based on Set Approach 48
 2.6.3 Solution Concepts Based on Lattice Structure 55
 2.6.4 The Embedding Approach by Kuroiwa 65
 2.6.5 Solution Concepts with Respect to Abstract Preference Relations ... 67
 2.6.6 Set-Valued Optimization Problems with Variable Ordering Structure ... 70
 2.6.7 Approximate Solutions of Set-Valued Optimization Problems ... 73
 2.7 Relationships Between Solution Concepts 74

3 **Continuity and Differentiability** 77
 3.1 Continuity Notions for Set-Valued Maps 77
 3.2 Continuity Properties of Set-Valued Maps Under Convexity Assumptions ... 90
 3.3 Lipschitz Properties for Single-Valued and Set-Valued Maps ... 96
 3.4 Clarke’s Normal Cone and Subdifferential 102

xiii
3.5 Limiting Cones and Generalized Differentiability 103
3.6 Approximate Cones and Generalized Differentiability 107

4 Tangent Cones and Tangent Sets 109
4.1 First-Order Tangent Cones 110
 4.1.1 The Radial Tangent Cone and the Feasible Tangent Cone 110
 4.1.2 The Contingent Cone and the Interiorly Contingent Cone 112
 4.1.3 The Adjacent Cone and the Interiorly Adjacent Cone 120
4.2 Modified First-Order Tangent Cones 123
 4.2.1 The Modified Radial and the Modified Feasible Tangent Cones ... 124
 4.2.2 The Modified Contingent and the Modified Interiorly Contingent Cones 124
 4.2.3 The Modified Adjacent and the Modified Interiorly Adjacent Cones 126
4.3 Miscellaneous Properties of First-Order Tangent Cones 129
4.4 First-Order Tangent Cones on Convex Sets 132
 4.4.1 Connections Among First-Order Tangent Cones on Convex Sets ... 132
 4.4.2 Properties of First-Order Tangent Cones on Convex Sets 137
4.5 First-Order Local Cone Approximation 143
4.6 Convex Subcones of the Contingent Cone 147
4.7 First-Order Inversion Theorems and Intersection Formulas ... 156
4.8 Expressions of the Contingent Cone on Some Constraint Sets 161
4.9 Second-Order Tangent Sets 169
 4.9.1 Second-Order Radial Tangent Set and Second-Order Feasible Tangent Set 170
 4.9.2 Second-Order Contingent Set and Second-Order Interiorly Contingent Set 170
 4.9.3 Second-Order Adjacent Set and Second-Order Interiorly Adjacent Set 173
4.10 Generalized Second-Order Tangent Sets 175
4.11 Second-Order Asymptotic Tangent Cones 181
 4.11.1 Second-Order Asymptotic Feasible Tangent Cone and Second-Order Asymptotic Radial Tangent Cone 182
 4.11.2 Second-Order Asymptotic Contingent Cone and Second-Order Asymptotic Interiorly Contingent Cone 183
4.11.3 Second-Order Asymptotic Adjacent Cone
and Second-Order Asymptotic Interiorly
Adjacent Cone ... 185
4.12 Miscellaneous Properties of Second-Order Tangent
Sets and Second-Order Asymptotic Tangent Cones 187
4.13 Second-Order Inversion Theorems 192
4.14 Expressions of the Second-Order Contingent Set
on Specific Constraints .. 197
4.15 Miscellaneous Second-Order Tangent Cones 202
4.15.1 Second-Order Tangent Cones of Ledzewicz
and Schaettler ... 202
4.15.2 Projective Tangent Cones of Second-Order 204
4.15.3 Second-Order Tangent Cone of N. Pavel 206
4.15.4 Connections Among the Second-Order
Tangent Cones ... 207
4.16 Second-Order Local Approximation 207
4.17 Higher-Order Tangent Cones and Tangent Sets 210

5 Nonconvex Separation Theorems 213
5.1 Separating Functions and Examples 213
5.2 Nonlinear Separation ... 217
5.2.1 Construction of Scalarizing Functionals 217
5.2.2 Properties of Scalarization Functions 219
5.2.3 Continuity Properties 224
5.2.4 Lipschitz Properties 225
5.2.5 The Formula for the Conjugate
and Subdifferential of for Convex 231
5.3 Scalarizing Functionals by Hiriart-Urruty and Zaffaroni ... 232
5.4 Characterization of Solutions of Set-Valued
Optimization Problems by Means of Nonlinear
Scalarizing Functionals .. 236
5.4.1 An Extension of the Functional 236
5.4.2 Characterization of Solutions of Set-Valued
Optimization Problems with Lower Set Less
Order Relation by Scalarization 240
5.5 The Extremal Principle ... 244

6 Hahn-Banach Type Theorems 249
6.1 The Hahn–Banach–Kantorovich Theorem 250
6.2 Classical Separation Theorems for Convex Sets 258
6.3 The Core Convex Topology 261
6.4 Yang’s Generalization of the Hahn–Banach Theorem 264
6.5 A Sufficient Condition for the Convexity of 271
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Conjugates and Subdifferentials</td>
<td>275</td>
</tr>
<tr>
<td>7.1</td>
<td>The Strong Conjugate and Subdifferential</td>
<td>275</td>
</tr>
<tr>
<td>7.2</td>
<td>The Weak Subdifferential</td>
<td>288</td>
</tr>
<tr>
<td>7.3</td>
<td>Subdifferentials Corresponding to Henig Proper Efficiency</td>
<td>296</td>
</tr>
<tr>
<td>7.4</td>
<td>Exact Formulas for the Subdifferential of the Sum and the Composition</td>
<td>298</td>
</tr>
<tr>
<td>8</td>
<td>Duality</td>
<td>307</td>
</tr>
<tr>
<td>8.1</td>
<td>Duality Assertions for Set-Valued Problems Based on Vector Approach</td>
<td>308</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Conjugate Duality for Set-Valued Problems Based on Vector Approach</td>
<td>308</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Lagrange Duality for Set-Valued Optimization Problems Based on Vector Approach</td>
<td>313</td>
</tr>
<tr>
<td>8.2</td>
<td>Duality Assertions for Set-Valued Problems Based on Set Approach</td>
<td>317</td>
</tr>
<tr>
<td>8.3</td>
<td>Duality Assertions for Set-Valued Problems Based on Lattice Structure</td>
<td>322</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Conjugate Duality for \mathcal{F}-Valued Problems</td>
<td>323</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Lagrange Duality for \mathcal{I}-Valued Problems</td>
<td>326</td>
</tr>
<tr>
<td>8.4</td>
<td>Comparison of Different Approaches to Duality in Set-Valued Optimization</td>
<td>338</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Lagrange Duality</td>
<td>339</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Subdifferentials and Stability</td>
<td>341</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Duality Statements with Operators as Dual Variables</td>
<td>345</td>
</tr>
<tr>
<td>9</td>
<td>Existence Results for Minimal Points</td>
<td>349</td>
</tr>
<tr>
<td>9.1</td>
<td>Preliminary Notions and Results Concerning Transitive Relations</td>
<td>349</td>
</tr>
<tr>
<td>9.2</td>
<td>Existence of Minimal Elements with Respect to Transitive Relations</td>
<td>352</td>
</tr>
<tr>
<td>9.3</td>
<td>Existence of Minimal Points with Respect to Cones</td>
<td>355</td>
</tr>
<tr>
<td>9.4</td>
<td>Types of Convex Cones and Compactness with Respect to Cones</td>
<td>360</td>
</tr>
<tr>
<td>9.5</td>
<td>Existence of Optimal Solutions for Vector and Set Optimization Problems</td>
<td>362</td>
</tr>
<tr>
<td>10</td>
<td>Ekeland Variational Principle</td>
<td>369</td>
</tr>
<tr>
<td>10.1</td>
<td>Preliminary Notions and Results</td>
<td>369</td>
</tr>
<tr>
<td>10.2</td>
<td>Minimal Points in Product Spaces</td>
<td>373</td>
</tr>
<tr>
<td>10.3</td>
<td>Minimal Points in Product Spaces of Isac–Tammer’s Type</td>
<td>381</td>
</tr>
<tr>
<td>10.4</td>
<td>Ekeland’s Variational Principles of Ha’s Type</td>
<td>384</td>
</tr>
<tr>
<td>10.5</td>
<td>Ekeland’s Variational Principle for Bi-Set-Valued Maps</td>
<td>390</td>
</tr>
<tr>
<td>10.6</td>
<td>EVP Type Results</td>
<td>391</td>
</tr>
<tr>
<td>10.7</td>
<td>Error Bounds</td>
<td>394</td>
</tr>
</tbody>
</table>
11 Derivatives and Epiderivatives of Set-Valued Maps 399
 11.1 Contingent Derivatives of Set-Valued Maps 400
 11.1.1 Miscellaneous Graphical Derivatives of Set-valued Maps 407
 11.1.2 Convexity Characterization Using Contingent Derivatives 414
 11.1.3 Proto-Differentiability, Semi-Differentiability, and Related Concepts .. 416
 11.1.4 Weak Contingent Derivatives of Set-Valued Maps 422
 11.1.5 A Lyusternik-Type Theorem Using Contingent Derivatives 426
 11.2 Calculus Rules for Derivatives of Set-Valued Maps 428
 11.2.1 Calculus Rules by a Direct Approach 429
 11.2.2 Derivative Rules by Using Calculus of Tangent Cones 432
 11.3 Contingently C-Absorbing Maps 437
 11.4 Epiderivatives of Set-Valued Maps 445
 11.4.1 Contingent Epiderivatives of Set-Valued Maps with Images in \mathbb{R} 446
 11.4.2 Contingent Epiderivatives in General Spaces 452
 11.4.3 Existence Theorems for Contingent Epiderivatives 457
 11.4.4 Variational Characterization of the Contingent Epiderivatives 464
 11.5 Generalized Contingent Epiderivatives of Set-Valued Maps 470
 11.5.1 Existence Theorems for Generalized Contingent Epiderivatives 474
 11.5.2 Characterizations of Generalized Contingent Epiderivatives 478
 11.6 Calculus Rules for Contingent Epiderivatives 482
 11.7 Second-Order Derivatives of Set-Valued Maps 488
 11.8 Calculus Rules for Second-Order Contingent Derivatives 500
 11.9 Second-Order Epiderivatives of Set-Valued Maps 504

12 Optimality Conditions in Set-Valued Optimization 509
 12.1 First-Order Optimality Conditions by the Direct Approach 512
 12.2 First-Order Optimality Conditions by the Dubovitskii-Milyutin Approach 522
 12.2.1 Necessary Optimality Conditions by the Dubovitskii-Milyutin Approach 523
 12.2.2 Inverse Images and Subgradients of Set-Valued Maps 527
 12.2.3 Separation Theorems and the Dubovitskii-Milyutin Lemma 534
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.4</td>
<td>Lagrange Multiplier Rules by the Dubovitskii-Milyutin Approach</td>
<td>537</td>
</tr>
<tr>
<td>12.3</td>
<td>Sufficient Optimality Conditions in Set-Valued Optimization</td>
<td>542</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Sufficient Optimality Conditions Under Convexity and Quasi-Convexity</td>
<td>542</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Sufficient Optimality Conditions Under Paraconvexity</td>
<td>545</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Sufficient Optimality Conditions Under Semidifferentiability</td>
<td>549</td>
</tr>
<tr>
<td>12.4</td>
<td>Second-Order Optimality Conditions in Set-Valued Optimization</td>
<td>549</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Second-Order Optimality Conditions by the Dubovitskii-Milyutin Approach</td>
<td>550</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Second-Order Optimality Conditions by the Direct Approach</td>
<td>554</td>
</tr>
<tr>
<td>12.5</td>
<td>Generalized Dubovitskii-Milyutin Approach in Set-Valued Optimization</td>
<td>557</td>
</tr>
<tr>
<td>12.5.1</td>
<td>A Separation Theorem for Multiple Closed and Open Cones</td>
<td>559</td>
</tr>
<tr>
<td>12.5.2</td>
<td>First-Order Generalized Dubovitskii-Milyutin Approach</td>
<td>562</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Second-Order Generalized Dubovitskii-Milyutin Approach</td>
<td>567</td>
</tr>
<tr>
<td>12.6</td>
<td>Set-Valued Optimization Problems with a Variable Order Structure</td>
<td>568</td>
</tr>
<tr>
<td>12.7</td>
<td>Optimality Conditions for Q-Minimizers in Set-Valued Optimization</td>
<td>572</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Optimality Conditions for Q-Minimizers Using Radial Derivatives</td>
<td>572</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Optimality Conditions for Q-Minimizers Using Coderivatives</td>
<td>574</td>
</tr>
<tr>
<td>12.8</td>
<td>Lagrange Multiplier Rules Based on Limiting Subdifferential</td>
<td>578</td>
</tr>
<tr>
<td>12.9</td>
<td>Necessary Conditions for Approximate Solutions of Set-Valued Optimization Problems</td>
<td>591</td>
</tr>
<tr>
<td>12.10</td>
<td>Necessary and Sufficient Conditions for Solution Concepts Based on Set Approach</td>
<td>594</td>
</tr>
<tr>
<td>12.11</td>
<td>Necessary Conditions for Solution Concepts with Respect to a General Preference Relation</td>
<td>598</td>
</tr>
<tr>
<td>12.12</td>
<td>KKT-Points and Corresponding Stability Results</td>
<td>600</td>
</tr>
<tr>
<td>13</td>
<td>Sensitivity Analysis in Set-Valued Optimization and Vector Variational Inequalities</td>
<td>605</td>
</tr>
<tr>
<td>13.1</td>
<td>First Order Sensitivity Analysis in Set-Valued Optimization</td>
<td>606</td>
</tr>
<tr>
<td>13.2</td>
<td>Second Order Sensitivity Analysis in Set-Valued Optimization</td>
<td>613</td>
</tr>
</tbody>
</table>
13.3 Sensitivity Analysis in Set-Valued Optimization Using Coderivatives .. 623
13.4 Sensitivity Analysis for Vector Variational Inequalities 634

14 Numerical Methods for Solving Set-Valued Optimization Problems ... 645
14.1 A Newton Method for Set-Valued Maps 645
14.2 An Algorithm to Solve Polyhedral Convex Set-Valued Optimization Problems .. 651
 14.2.1 Formulation of the Polyhedral Convex
 Set-Valued Optimization Problem 653
 14.2.2 An Algorithm for Solving Polyhedral
 Convex Set-Valued Optimization Problems 655
 14.2.3 Properties of the Algorithm 658

15 Applications .. 663
15.1 Set-Valued Approaches to Duality in Vector Optimization 663
 15.1.1 Fenchel Duality for Vector Optimization
 Problems Using Corresponding Results
 for \(\mathcal{P} \)-Valued Problems 667
 15.1.2 Lagrange Duality for Vector Optimization
 Problems Based on Results for \(\mathcal{P} \)-Valued Problems 670
 15.1.3 Duality Assertions for Linear Vector
 Optimization Based on Lattice Approach 677
 15.1.4 Further Set-Valued Approaches to Duality
 in Linear Vector Optimization 682
15.2 Applications in Mathematical Finance 696
15.3 Set-Valued Optimization in Welfare Economics 701
15.4 Robustness for Vector-Valued Optimization Problems 706
 15.4.1 \(\leq^u \) -Robustness 710
 15.4.2 \(\leq^c \) -Robustness 720
 15.4.3 \(\leq^s \) -Robustness 722
 15.4.4 Algorithms for Solving Special Classes
 of Set-Valued Optimization Problems 724

Appendix ... 727

References .. 733

Index ... 759
Set-valued Optimization
An Introduction with Applications
Khan, A.A.; Tammer, C.; Zălinescu, C.
2015, XXII, 765 p. 29 illus., Hardcover
ISBN: 978-3-642-54264-0