Preface

The Gentianaceae, or Gentian family, is worldwide in distribution with approximately 100 genera and about 1,800 species that include monocarpic and perennial herbs, shrubs, trees, and lianes, with terrestrial and epiphytic representatives. The plants are diverse in habit, the majority being herbaceous. The tropics are the main source of new species of the Gentianaceae. *Gentiana* (360 species), *Gentianella* (250 species), and *Swertia* (135 species) are the three largest genera; members of the family are protected by law. Several species are important pharmacologically because of their secondary metabolites, as some of the compounds have a broad spectrum of biological activity.

Initial contacts with Gentians often occur during childhood when skin is protected from bacterial infection by *Gencjana* (Polish) or *Violetum Gentianae* (Latin), while children suffering from chickenpox are also painted with *Violetum* to counteract infection by *Herpes virus varicellae*. The importance of Gentians escalated in the 1980s when several studies at the plant level focused on the vegetative propagation of species, such as *Gentiana lutea* and *G. cruciata*, following recognition of the secondary products synthesized by some members of this genus. Research into Gentians, especially in Poland, was stimulated further by publication of the “Red Book” of the Polish Flora. This volume included reference to numerous Gentians and Gentianellas, with the need for their multiplication and reintroduction into the wild because of destructive over-collection of wild material for pharmaceutical use, combined with loss of natural habitats. Some species are now rare and endangered. Variation in plant habit, especially flower morphology and pigmentation, also make members of the Gentianaceae attractive for outdoor and indoor cultivation. The establishment of the Web site “Gentiana.pl” supplemented the earlier reference site “Gentiana Research Network” established by Dr. Lena Struwe at Rutgers University, New Brunswick, USA. Much deliberation, contacts at the scientific level and discussions with colleagues at Springer, resulted in the compilation of these two volumes on Gentians. Volume 1 includes contributions on the characterization of this family of plants, while Volume 2 is devoted to aspects of biotechnology and their applications.
Volume 1: Characterization and Ecology

Volume 1, comprising 12 chapters, centers upon the characterization and ecology of the Gentianaceae, with some emphasis on the application of molecular and cytological approaches in relation to taxonomy. The first three chapters consider classification of this family of plants, with Chap. 2 reviewing research progress since the earlier revision of the Gentianaceae in 2002. This revision resulted in reclassification of some plants and the naming of new genera. Chapter 3 provides the most comprehensive report to date of the systematics of South American Neotropical woody members of the Gentians, with discussion of the use of cytological and molecular technologies to facilitate classification. Other reviews (Chaps. 4, 5) include details of the Gentianaceae in The Ukraine and Balkan Peninsula, with discussion of the taxonomy of representative species in these regions. Floral pigmentation in members of this family has been a topic of investigation for many years, with the key biochemical steps that result in the diversity of flower colors found in Gentians being summarized in Chap. 6. Other aspects of this diverse, interesting group of plants include the cytology of European species (Chap. 7), and a historical account of the importance of Gentians in herbal medicines, with links to evolution and classification (Chap. 8). Analysis of gene expression in overwintering buds is presented as an approach with which to study several aspects of plant taxonomy, phenotypic characteristics, phylogeography, and pedigree (Chap. 9). Two (Chaps. 10, 11) indicate the importance of Gentians in India in terms of their exploitation as herbal-based medicines, but emphasize the need for conservation to negate the loss of germplasm from natural habitats resulting from random harvesting. Finally, Chap. 12 presents evidence for the importance of fungi from the Phylum Glomeromycota in developing arbuscular mycorrhizal associations with the roots of members of the Gentianaceae. The role of such associations in plant growth and development is also discussed. Volume 1 of the Gentianaceae provides a general, broad-based foundation for more biotechnological approaches that are considered in Volume 2.

Volume 2: Biotechnology and Applications

The Gentianaceae includes species which are popular as ornamentals in the form of cut flowers and pot plants, with market demands necessitating improvement in flower quality, particularly characteristics such as inflorescence longevity. Micropropagation has become a routine procedure for multiplication of horticultural genera, including Blakstonia, Centaurium, Genetiana, Gentianella, and Swertia, with seedlings being the most common source of explants for plant propagation in vitro. Although organogenesis is the main route of plant regeneration, somatic embryogenesis is also a pathway in routine use for plant multiplication. These approaches are discussed in detail in Chaps. 1–6. Embryogenic
cultures, such as cell suspensions, are an excellent source of protoplasts for gene transfer by somatic hybridization and cybridization. The relevance of the latter technologies (Chap. 7) is that they generate nuclear and cytoplasmic combinations normally unavailable to plant breeders through conventional sexual hybridization. Techniques presented in Volume 2 also include the generation of haploid and dihaploid plants from cultured anthers, and the genetic variation that may arise from tissue and organ culture (Chaps. 8, 9). Subsequent chapters discuss the molecular breeding of Gentians, particularly gene transfer by transformation, with associated genetic analyses (Chap. 10). Molecular markers facilitate breeding and cultivar identification. Vegetative propagation to generate genetically uniform populations and, conversely, manipulations to increase genetic variability, often rely upon cryopreservation as a common technology for long-term storage of relevant germplasm (Chap. 11). Other reviews consider the postharvest physiology of Gentian flowers (Chap. 12), and the biosynthesis of secondary metabolites, including antimalarial compounds (Chaps. 13–18). Modification of secondary metabolites has application in human health protection. Interestingly, the beauty of Gentian flowers and the pharmaceutical value of the plants have been the reasons for the special interest in the Gentianaceae since ancient times.

These two volumes should serve as key references for persons from a wide range of disciplines, including students and staff of universities and institutes, as well as professional gardeners and plant hobbyists.

Jan J. Rybczyński
Michael R. Davey
Anna Mikuła
The Gentianaceae - Volume 1: Characterization and Ecology
Rybczyński, J.J.; Davey, M.R.; Mikula, A. (Eds.)
2014, XVIII, 329 p. 96 illus., 56 illus. in color., Hardcover
ISBN: 978-3-642-54009-7