Contents

1 Introduction .. 1
 1.1 Present Study on Non-Fourier Heat Conduction 1
 1.2 Present Theoretical Models 3
 1.2.1 C-V Model .. 3
 1.2.2 Hyperbolic Two-Step Model 4
 1.2.3 Parabolic Two-Step Model 5
 1.2.4 Phonon Kinetic Model 5
 1.2.5 Dual-Phase Lag Model 6
 1.3 Present Experimental Study of Heat Conduction
 in Metallic Nanofilms 7
 1.3.1 Experimental Study in Unsteady States 7
 1.3.2 Experimental Study in Steady States 11
 1.4 Conclusions .. 14
 References .. 15

2 Thermomass Theory for Non-Fourier Heat Conduction 21
 2.1 Definition of Thermomass and the State Equation
 of Thermon Gas ... 21
 2.1.1 Definition of Thermomass and Themon Gas 21
 2.1.2 State Equation of Thermon Gas in Ideal Gas 24
 2.1.3 State Equation of Thermon Gas in Dielectrics 25
 2.1.4 State Equation of Thermon Gas in Metals 26
 2.1.5 Unified State Equation of Thermon Gas 29
 2.2 Non-Fourier Heat Conduction Equation in Unsteady States 30
 2.2.1 Governing Equation of Motion of Thermon Gas 30
 2.2.2 General Heat Conduction Equation 31
 2.2.3 Two-Step Thermomass Model for Metals 33
 2.2.4 Numerical Simulation Examples 34
 2.3 Non-Fourier Heat Conduction Equation in Steady States 42
 2.4 Heat Flow Choking Phenomenon 44
 2.5 Conclusions .. 52
 References .. 53
3 Experimental Investigation of Thermal Wave and Temperature Wave

3.1 Principles of Femtosecond Laser Thermoreflectance System
 3.1.1 Experimental Principle
 3.1.2 Experimental Setup

3.2 Thermal Wave and Temperature Wave in Metallic Nanofilms

3.3 Measurement of Temperature Wave in Metallic Nanofilms

3.4 Electron–Phonon Coupling Factor and Interfacial Thermal Resistance

3.5 Conclusions

References

4 Experimental Proof of Steady-State Non-Fourier Heat Conduction

4.1 Electrical and Thermal Conductivities of Metallic Nanofilms
 4.1.1 Direct Current Heating Experiment of Metallic Nanofilms
 4.1.2 Electrical Conductivity
 4.1.3 Thermal Conductivity
 4.1.4 Break Down of Wiedemann–Franz Law at Low Temperatures

4.2 Experimental Proof of Steady Non-Fourier Heat Conduction
 4.2.1 Experimental Principle
 4.2.2 Experimental Result and Analysis

4.3 Conclusions

References

5 Conclusions
Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory
Wang, H.-D.
2014, XIV, 112 p. 93 illus., 25 illus. in color., Hardcover
ISBN: 978-3-642-53976-3