Contents

1 Precise Matter and Antimatter Tests of the Standard Model with e^-, e^+, p, \bar{p} and \bar{H} ... 1
G. Gabrielse, S. Fogwell Hoogerheide, J. Dorr and E. Novitski
1.1 Overview Summary ... 1
1.2 Magnetic Moments ... 6
1.3 One-Electron Quantum Cyclotron 9
 1.3.1 A Homemade Atom 9
 1.3.2 Cylindrical Penning Trap Cavity 11
 1.3.3 100 mK and 5 T 14
 1.3.4 Stabilizing the Energy Levels 15
 1.3.5 Motions and Damping of the Suspended Electron .. 17
1.4 Non-destructive Detection of One-Quantum Transitions 17
 1.4.1 QND Detection 17
 1.4.2 One-Electron Self-Excited Oscillator 19
 1.4.3 Inhibited Spontaneous Emission 20
1.5 Elements of a Electron $g/2$ Measurement 22
 1.5.1 Quantum Jump Spectroscopy 22
 1.5.2 The Electron as Magnetometer 24
 1.5.3 Measuring the Axial Frequency 24
 1.5.4 Frequencies from Lineshapes 25
 1.5.5 Cavity Shifts 26
1.6 Results and Applications 28
 1.6.1 Most Accurate Electron $g/2$ 28
 1.6.2 Most Accurate Determination of α 30
 1.6.3 Testing the Standard Model and QED 32
 1.6.4 Probe for Electron Substructure 35
 1.6.5 Comparison to the Muon $g/2$ 35
1.7 Prospects and Conclusion 36

References .. 37
2 Theory of Anomalous Magnetic Dipole
Moments of the Electron .. 41
Masashi Hayakawa
2.1 Introduction .. 41
2.2 QED and Anomalous Magnetic Dipole Moment 44
 2.2.1 Perturbation Theory of QED 44
 2.2.2 Feynman Diagrams and Feynman Rule 46
 2.2.3 Anomalous Magnetic Dipole Moment 48
 2.2.4 Renormalization and Counter-Terms 49
 2.2.5 Classification of Perturbative Dynamics 50
2.3 Non-QED Contribution to $g - 2$ 51
2.4 Numerical Approach to Perturbative QED Calculation 54
 2.4.1 Classification of Feynman Diagrams 54
 2.4.2 Parametric Representation of Feynman Diagrams 57
 2.4.3 Subtraction of UV and IR Divergences 61
2.5 Result for QED Contribution 67
References .. 69

3 Magnetic Moment of the Bound Electron 73
Manuel Vogel and Wolfgang Quint
3.1 The Case of the Bound Electron 73
3.2 Why the Bound Electron is Interesting 75
3.3 A Brief Look Back ... 77
3.4 The Continuous Stern-Gerlach Effect 79
3.5 Measurement Principle and Ion Confinement 81
 3.5.1 Measurement Principle and Ideal Confinement 81
 3.5.2 Imperfections ... 82
 3.5.3 Magnetic Bottle .. 90
3.6 Experimental Setups and Techniques 96
 3.6.1 Ion Cooling and Oscillation Frequency Measurement .. 99
 3.6.2 Larmor Frequency Measurement 102
 3.6.3 Spin State Determination 103
 3.6.4 Double-Trap Technique 106
 3.6.5 Mode Coupling Techniques 108
3.7 Results ... 111
 3.7.1 Larmor Resonances 111
 3.7.2 Resulting Magnetic Moments and Uncertainties 112
3.8 Double-Resonance Spectroscopy 114
 3.8.1 Application to Highly Charged Ions 115
 3.8.2 Double-Resonance Spectroscopy and the Zeeman Effect 121
3.9 Comment on Trap-Specific Spectroscopy 122
3.10 Relation of the Bound Electron Magnetic Moment to Other Quantities 123
3.10.1 Fine Structure Constant 123
3.10.2 Electron Mass 125
3.10.3 Relations to Nuclear Properties 125
References 127

4 QED Theory of the Bound-Electron Magnetic Moment 137
D. A. Glazov, A. V. Volotka, V. M. Shabaev and G. Plunien
4.1 Introduction 137
4.2 Furry Picture of QED 138
4.2.1 Screening Potential 141
4.2.2 Effective Hamiltonian 142
4.2.3 One-Electron QED Effects 143
4.2.4 Many-Electron QED Effects 149
4.3 Nuclear Recoil Effect 153
4.4 Nuclear Size and Polarization Effects 154
4.5 Zeeman Splitting in Few-Electron Ions 155
4.5.1 Non-linear in Magnetic Field Effects 156
References 158

5 The Magnetic Moments of the Proton and the Antiproton 165
Stefan Ulmer and Christian Smorra
5.1 Introduction 165
5.2 CPT Tests 167
5.3 The Magnetic Moments of the Proton and the Antiproton 170
5.4 Antiproton Magnetic Moment and Antihydrogen Hyperfine Structure 173
5.5 g-Factor Measurements 174
5.6 The Penning Trap 174
5.7 Experimental Setup 177
5.8 Measurement of the Eigenfrequencies 178
5.8.1 Peak Detection 178
5.8.2 Dip Detection 179
5.8.3 Sideband Coupling 181
5.9 Advanced Frequency Measurements 182
5.10 Continuous Stern Gerlach Effect 184
5.11 Larmor Frequency Measurement 186
5.12 Line Profile and Transition Rates 187
5.13 Statistical Detection of Spinflips 189
5.14 Feedback Cooling: Reduction of Linewidth 191
5.15 Determination of the g-Factor 192
6 Fundamental Physics with Antihydrogen

J. S. Hangst

6.1 Some History

6.2 Producing Antihydrogen: ATHENA

6.3 Detecting Antihydrogen: ATHENA

6.4 Antihydrogen and Ion Trap Physics

6.5 Trapping Antihydrogen for Spectroscopy: ALPHA

6.6 Autoresonant Injection of Antiprotons into a Positron Plasma

6.7 Evaporative Cooling of Charged Antimatter Plasmas

6.8 Towards Antihydrogen Spectroscopy

References

7 High-Precision Mass Measurements of Radionuclides with Penning Traps

Michael Block

7.1 Importance of Masses of Radionuclides

7.2 Mass Measurements at On-line Facilities

7.3 Penning-Trap Mass Spectrometry

7.4 Production of Radionuclides at On-line Facilities

7.4.1 Typical Layout of a Penning Trap Mass Spectrometer

7.5 Beam Preparation

7.5.1 Beam Preparation with an RFQ Cooler and Buncher

7.5.2 Penning Traps

7.5.3 Contributions to the Systematic Uncertainty in PTMS

7.5.4 Applications of High-Precision Mass Measurements

References
8 Quantum Information Processing with Trapped Ions

Christian Roos

8.1 Introduction

8.2 Storing Quantum Information in Trapped Ions

8.3 Preparation and Detection of a Qubit Encoded in a Single Ion

8.4 Coherent Manipulation of a Qubit

8.4.1 Laser-Ion Interactions

8.4.2 Laser Cooling of Single Ions

8.4.3 Single-Qubit Gates

8.5 Entangling Quantum Gates

8.5.1 Cirac–Zoller-Type Gate Interactions

8.5.2 Quantum Gates Based on Bichromatic Light Fields

8.5.3 Conditional Phase Gates

8.5.4 Mølmer-Sørensen Gates

8.6 Quantum State Tomography

8.7 Entangled States and Elementary Quantum Protocols

8.8 Quantum Simulation

8.9 Quantum Information for Precision Measurements

8.10 Decoherence and Scalability Issues

8.10.1 Decoherence in Trapped-Ion Experiments

8.10.2 Increasing the Number of Qubits

8.11 Outlook

References

9 Optical Transitions in Highly Charged Ions for Detection of Variations in the Fine-Structure Constant

A. Ong, J. C. Berengut and V. V. Flambaum

9.1 Introduction

9.2 Sensitivity of Atomic Transitions to \(\alpha \)-Variation

9.3 Level Crossings in Highly Charged Ions

9.4 Hole Crossings

9.5 Scaling Laws for Atomic Clocks Based on Highly Charged Ions

9.5.1 Scaling of the Sensitivity to \(\alpha \)-Variation

9.5.2 Scaling of \(EJ \) and \(MJ \) Transition Matrix Elements

9.5.3 Scaling of Polarizability and Blackbody Radiation Shift