Contents

1 Emergy Synthesis and Ecological Energy Accounting 1
 1.1 The Evolution from Systems Theory to Emergy 1
 1.2 Energy System Diagrams ... 5
 1.3 Emergy Values and Their Transformation 6
 1.4 The Ecological Energy Calculation Method 9
 1.4.1 Definitions of Exergy, Emergy, and Transformity 9
 1.4.2 General Emergy Calculation Method 10
 1.5 Indices Used in Emergy Synthesis 11
 1.6 Emergy Balance and Storage .. 13
 1.7 Ecological Energy Accounting for Tourism 15
 1.8 Conclusions .. 20
References .. 21

2 Ecological Energy Accounting for Macao’s Socioeconomic and Ecological Systems .. 27
 2.1 Social and Economic Characteristics of Macao 27
 2.2 Emergy Synthesis for Macao’s Eco-economic System in 2004 30
 2.3 Comparison of the Emergy-Based Indices of Five Cities 38
 2.3.1 Comparison of the Emergy Components 42
 2.3.2 Emergy Density, Emergy Use, and Fuel Use per Person 42
 2.3.3 E_m/S Ratio and Emergy Investment Rate (EIR) 43
 2.3.4 Emergy Exchange Ratio (EER) ... 44
 2.3.5 Renewable Resources Proportion (%Ren), Emergy
 Sustainability Index (ESI), and Net Emergy Ratio (NER) 45
 2.4 Time Series for Macao’s Emergy and Emergy-Based Indices 45
 2.4.1 The Components of Emergy Use 46
 2.4.2 Per Capita Electricity Emergy, Fuel Emergy, and Emergy
 Density (U/area) .. 50
 2.4.3 %Ren and Emergy Self-sufficiency Ratio (ESR) 50
 2.4.4 Emergy Exchange Ratio (EER) and Emergy Yield Ratio
 (EYR) ... 51
2.4.5 Total Emergy Used (U), Emergy Money Ratio ($E_m/$), Proportion of Waste Emergy (W), and Per Capita Emergy Use ... 51
2.4.6 Emergy Investment Ratio (EIR), Environmental Loading Ratio (ELR), and Emergy Sustainability Index (ESI) .. 53
2.4.7 Net Emergy (NE) and the Net Emergy Ratio (NER) 54
2.5 Time Series for Emergy Flows of Italy, Sweden, and Macao of China ... 55
2.5.1 %Ren .. 55
2.5.2 Emergy Use Per Capita .. 58
2.5.3 Emergy Money Ratio ($E_m/$) .. 58
2.5.4 Integrated Emergy Index: The Environmental Sustainability Index (ESI) .. 59
2.5.5 Storage Indices: NE and NER .. 61
2.6 Statistical Analyses of Emergy-Based Indicators of Macao 62
2.7 Conclusions .. 62
References .. 64

3 Emergy Synthesis and Simulation for Macao 67
3.1 Introduction to Ecological Emergy Accounting in a System Dynamics Context ... 68
3.2 Simulation Methodology Using the STELLA Modeling Software 69
3.3 Land Use and Reclamation in Macao .. 69
3.4 Simulation Results and Analyses ... 71
3.5 Conclusions .. 78
References .. 85

4 Emergy Analysis for Tourism Systems: Principles and a Case Study for Macao ... 87
4.1 Introduction to Ecological Emergy Accounting for Tourism 87
4.2 Methodology ... 88
4.2.1 Approaches Used in Tourism Emergy Accounting 88
4.2.2 Two Emergy Flows for Tourism: What You Paid for and What You Got .. 93
4.3 Emergy Analysis and Discussion: A Case Study of Tourism in Macao .. 94
4.3.1 Introduction to Tourism in Macao .. 94
4.3.2 Emergy Accounting for Macao’s Tourism Sector 94
4.4 Conclusions .. 103
References .. 104

5 Ecological Energy Accounting for the Gambling Sector: A Case Study in Macao ... 107
5.1 Introduction to Macao’s Gambling Sector 107
5.2 An Overview of Macao and Its Gambling Sector 108
5.3 Study Methodology .. 109
5.4 Results and Discussion ... 110
5.4 Conclusion

5.4.1 Water Emergy .. 114
5.4.2 Electricity Emergy 114
5.4.3 Food and Beverage Emergy 115
5.4.4 Labor Emergy .. 115
5.4.5 E_m/S Ratio ... 116
5.4.6 Emergy Yield Ratio 116
5.4.7 Emergy Used per Gambler 117
5.4.8 The Per Capita Electricity Emergy 118
5.4.9 The Ratio of Imported Services to Emergy Used 118
5.4.10 Net Emergy and Net Emergy Ratio 118
5.4.11 Emergy Exchange Ratio 118

5.5 Conclusions .. 119

References ... 120

6 Emergy Synthesis for Waste Treatment in Macao

6.1 Introduction to Waste Treatment in Macao 123
6.2 Emergy Accounting for Macao’s Wastes 124
6.3 Waste Emergy and Transformity in Macao 126
 6.3.1 Waste Emergy Synthesis for Macao 126
 6.3.2 Transformities of Wastes in Macao 130
6.4 Conclusions .. 133

References ... 134

7 Per Capita Resource Consumption and Resource Carrying Capacity: A Comparison of the Sustainability of Macao and 17 Countries

7.1 Introduction .. 137
7.2 Methods ... 139
 7.2.1 The Principle of Environmental Sustainability 139
 7.2.2 Resource Consumption and Carrying Capacity 141
7.3 Results and Discussion 143
 7.3.1 Emergy Consumption by the 17 Nations 143
 7.3.2 Per Capita Emergy Consumption for the 17 Nations 150
 7.3.3 National Emergy Consumption and Sustainability Conditions ... 154
7.4 Comparison of the Per Capita Emergy Between 2000 and 2008 156
7.5 Summary of the Per Capita Emergy Analysis for Macao 157
7.6 Conclusions .. 158

References ... 160

8 Conclusions and Outlook

8.1 Conclusions .. 163
 8.1.1 Emergy Synthesis and Ecological Energy Accounting 163
 8.1.2 Ecological Energy Accounting for Macao’s Socioeconomic and Ecological Systems 164
 8.1.3 Emergy Synthesis and Simulation for Macao ... 165
8.1.4 Emergy Analysis for Tourism Systems: Principles and a Case Study for Macao .. 166
8.1.5 Ecological Energy Accounting for the Gambling Sector: A Case Study in Macao .. 167
8.1.6 Emergy Synthesis for Waste Treatment in Macao 168
8.1.7 Per Capita Resource Consumption and Resource Carrying Capacity: A Comparison of the Sustainability of Macao and 17 Countries .. 169

8.2 Outlook .. 170
8.2.1 Better Statistics and More Exact Transformity Values 170
8.2.2 The Importance of Wastes and Their Treatment 171
8.2.3 Integrating Catabolic Processes with Emergy Accounting 171

Appendix A Supplementary Tables That Summarize the Inflow and Outflow Emergy Values for Macao in 2004 .. 173
Appendix B Supplementary Tables That Summarize the Inflows and the Outflows of Emergy for Macao in 2007 .. 185
Appendix C Definitions of the Parameters Used in This Book 195
Ecological Emergy Accounting for a Limited System:
General Principles and a Case Study of Macao
Lei, K.; Zhou, S.; Wang, Z.
2014, XII, 196 p. 68 illus., Hardcover
ISBN: 978-3-642-45169-0