Contents

Part I Fundamentals of LIBS

1 Laser–Matter Interaction in LIBS Experiments 3
 Andrea Marco Malvezzi
 1.1 Introduction 3
 1.2 Laser Interaction with Gases 6
 1.2.1 Multiphoton Ionization .. 7
 1.2.2 Cascade Ionization 10
 1.3 Laser Interaction with Solid Materials from Milliseconds
to Nanoseconds 14
 1.3.1 Heating and Melting 15
 1.3.2 Vaporization 18
 1.4 Laser Interaction with Solid Materials:
 Ultrashort Laser Pulses 24
 1.5 Conclusions 27
 References 28

2 Physical Processes in Optical Emission Spectroscopy 31
 Mario Capitelli, Gianpiero Colonna, Giuliano D’Ammando,
 Rosalba Gaudiuso and Lucia Daniela Pietanza
 2.1 Introduction 31
 2.2 LTE Plasmas: The Few Level Approximation
 for the Partition Function and Thermodynamic
 Properties of Atomic Species 34
 2.3 Non-LTE Plasmas: Collisional Radiative Models Coupled
 with Electron Energy Distribution Function
 and Radiation Transfer 38
 2.4 Fluid Dynamics of Laser-Plasma Expansion in Gas
 and Liquids: Modeling and Validation 45
 2.5 Conclusions and Perspectives 53
 References 55
5.2 Double Pulse Experimental Configurations
- **5.2.1 Collinear Configuration**
- **5.2.2 Orthogonal Configuration**
- **5.2.3 Other Configurations**

5.3 Double Pulse LIBS with Different Wavelengths and Pulse Lengths
- **5.3.1 Double Pulse LIBS with Different Wavelengths**
- **5.3.2 Double Pulse LIBS with Different Pulse Durations**

5.4 Physical Principles Underlying Double Pulse LIBS Analysis

5.5 Multiple Pulse LIBS

5.6 Double Pulse Instrumentation

5.7 Applications of Double and Multiple Pulse LIBS
- **5.7.1 Stand-Off Detection of Hazardous Materials**
- **5.7.2 Double Pulse Analysis of Soils**
- **5.7.3 Double Pulse Analysis of Biological Tissues**
- **5.7.4 Double Pulse LIBS of Archaeological Objects**

5.8 Conclusion

References

6 Femtosecond Laser Ablation: Fundamentals and Applications

Sivanandan S. Harilal, Justin R. Freeman, Prasoon K. Diwakar and Ahmed Hassanein

6.1 Introduction

6.2 Femtosecond Laser System

6.3 Laser–Matter Interaction

6.4 Femtosecond Laser Absorption: Energy Transport

6.5 Ablation Mechanisms

6.6 Ablation Threshold

6.7 Plasma Characterization: Comparison Between ns and fs LIBS Plumes
- **6.7.1 Plume Hydrodynamics**
- **6.7.2 Plasma Spectral Features**
- **6.7.3 Plasma Characterization**

6.8 Conclusions

References

Part II Applications of LIBS

7 Applications of LIBS to the Analysis of Metals

Stefano Legnaioli, Giulia Lorenzetti, Lorenzo Pardini, G. H. Cavalcanti and Vincenzo Palleschi

7.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Laser Ablation of Metals</td>
<td>171</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Optimization of Laser Pulse Energy</td>
<td>172</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Choice of Laser Wavelength and Pulse Duration</td>
<td>175</td>
</tr>
<tr>
<td>7.3</td>
<td>Applications</td>
<td>177</td>
</tr>
<tr>
<td>7.3.1</td>
<td>LIBS Analysis of Aluminium Alloys</td>
<td>177</td>
</tr>
<tr>
<td>7.3.2</td>
<td>LIBS Analysis of Iron-Based Alloys</td>
<td>181</td>
</tr>
<tr>
<td>7.3.3</td>
<td>LIBS Analysis of Copper-Based Alloys</td>
<td>185</td>
</tr>
<tr>
<td>7.3.4</td>
<td>LIBS Analysis of Precious Alloys</td>
<td>187</td>
</tr>
<tr>
<td>7.3.5</td>
<td>LIBS Analysis of Molten Metals</td>
<td>189</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Other LIBS Application on Metal Alloys</td>
<td>189</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>191</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>LIBS Analysis of Liquids and of Materials Inside Liquids</td>
<td>195</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>196</td>
</tr>
<tr>
<td>8.2</td>
<td>Sampling of Liquid Surface, Droplet and Aerosol</td>
<td>198</td>
</tr>
<tr>
<td>8.3</td>
<td>Analysis of Ice and of Liquid Inclusions</td>
<td>202</td>
</tr>
<tr>
<td>8.4</td>
<td>Underwater Analysis of Solid Targets with Gas Flow</td>
<td>203</td>
</tr>
<tr>
<td>8.5</td>
<td>Laser Induced Cavitation Inside Liquids</td>
<td>204</td>
</tr>
<tr>
<td>8.6</td>
<td>Comparison Between Single and Dual Pulse LIBS Inside Liquids</td>
<td>207</td>
</tr>
<tr>
<td>8.7</td>
<td>Analysis of Bulk Liquids</td>
<td>210</td>
</tr>
<tr>
<td>8.8</td>
<td>Direct Analysis of Submerged Solid Samples</td>
<td>217</td>
</tr>
<tr>
<td>8.9</td>
<td>Underwater Analysis of Sediments</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Laser Induced Breakdown Spectroscopy for Analysis of Aerosols</td>
<td>227</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>9.2</td>
<td>Direct/Free Stream Analysis: Discrete Nature of Plasma-Particle Interactions</td>
<td>229</td>
</tr>
<tr>
<td>9.3</td>
<td>Localized Plasma Particle Interactions: Implications to Matrix/Fractionation Effects</td>
<td>237</td>
</tr>
<tr>
<td>9.4</td>
<td>Single Droplet Sample Introduction System</td>
<td>243</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Calibration Curves and Limits of Detection for Ca and Au</td>
<td>244</td>
</tr>
<tr>
<td>9.5</td>
<td>Substrate Based Analysis or Indirect Analysis</td>
<td>250</td>
</tr>
<tr>
<td>9.6</td>
<td>Laser Ablation-LIBS</td>
<td>254</td>
</tr>
<tr>
<td>9.7</td>
<td>Conclusion</td>
<td>254</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>223</td>
</tr>
</tbody>
</table>
10 Space Applications of LIBS
David A. Cremers
10.1 Introduction
10.2 Review of Prior Missions and Conventional Analysis Methods
10.2.1 Objectives of Space Exploration
10.2.2 Overview of Missions to the Moon, Mars, Venus
10.2.3 Overview of Instrumentation Used on Planetary Surfaces
10.2.4 Some LIBS Capabilities Compared to Prior Instrumentation
10.3 LIBS Deployment Scenarios for Space Missions
10.3.1 Lasers in Space for Elemental Analysis
10.3.2 Interrogation Geometries Using LIBS
10.3.3 Considerations for Instrument Design
10.4 Review of LIBS Laboratory Studies Related to Space Applications
10.4.1 Plasma Characteristics at Different Pressures
10.4.2 LIBS Studies for Mars
10.4.3 LIBS Studies for Venus
10.4.4 LIBS Studies for the Moon/Airless Bodies
10.5 ChemCam Instrument
References

11 Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy
Mohammed Ashraf Gondal and Mohamed A. Dastageer
11.1 Introduction
11.2 Experimental Methods
11.3 Applications of LIBS on Soil Samples
11.3.1 Measurement of Nutrients in Green House Soil
11.3.2 On-Line Monitoring of Remediation Process of Chromium Polluted Soil Using LIBS
11.3.3 Determination of Trace Elements in Volcanic Erupted Soil Samples Collected from Cenozoic Lava Eruption Sites Using LIBS
11.3.4 Detection of Toxic Metals in Oil Spill Contaminated Soil Using LIBS
References

12 Geochemical Fingerprinting Using LIBS
Richard R. Hark and Russell S. Harmon
12.1 Geochemical Fingerprinting
12.1.1 Formation of Minerals: Geology and Geochemistry
12.1.2 Elemental Analysis Techniques for Geochemical Fingerprinting .. 312
12.2 LIBS for Geochemical Fingerprinting 313
 12.2.1 LIBS Instrumentation .. 315
 12.2.2 Advantages and Disadvantages of LIBS for Geochemical Fingerprinting 316
 12.2.3 Data Acquisition and Multivariate Data Analysis ... 319
12.3 Examples of Geochemical Fingerprinting Using LIBS 323
 12.3.1 Common Minerals ... 323
 12.3.2 Geomaterials .. 325
 12.3.3 Gemstones ... 327
 12.3.4 Rocks of Volcanic Origin 332
 12.3.5 Conflict Minerals .. 338
 12.3.6 Other Geomaterials .. 343
12.4 Future Development of LIBS for Geochemical Fingerprinting .. 343
References ... 344

13 LIBS Detection of Explosives in Traces 349
Javier Moros, Francisco J. Fortes, Jose M. Vadillo and J. Javier Laserna
13.1 Fundamentals .. 350
 13.1.1 Laser–Matter Interaction in the Nanosecond Ablation of Organics 351
 13.1.2 Analysis of Residues ... 355
13.2 Instruments .. 357
 13.2.1 Laboratory LIBS Systems 357
 13.2.2 Portable LIBS Systems ... 359
13.3 Chemometrics .. 360
13.4 Sensor Data Fusion .. 366
13.5 Conclusions and Outlook .. 374
References ... 375

14 Forensic Applications of LIBS 377
Richard R. Hark and Lucille J. East
14.1 Forensic Analysis of Physical Evidence 378
 14.1.1 Purposes for Analyzing Forensic Evidence 378
 14.1.2 Types of Forensic Evidence 380
 14.1.3 Rules for the Admissibility of Forensic Evidence in Court: The Frye and Daubert Standards 381
 14.1.4 Analytical Techniques for Physical Evidence 382
 14.1.5 LIBS: An Emerging Tool for the Forensic Community .. 384
14.2 Forensic Applications of LIBS

14.2.1 Glass

14.2.2 Paint

14.2.3 Ink and Paper (Questioned Documents)

14.2.4 Ammunition and Gunshot Residue

14.2.5 Fingerprints

14.2.6 Wood

14.2.7 Fibers

14.2.8 Biological Materials

14.2.9 Nuclear Forensics

14.2.10 Other Types of Evidence

14.2.11 Presentation of LIBS Evidence in Court

14.3 Future Development of LIBS for Analysis of Forensic Evidence

References
16 Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

Madhavi Z. Martin, Nicole Labbe and Rebekah J. Wagner

16.1 Introduction

16.2 Environmental Applications

16.2.1 Carbon Sequestration and Climate Change

16.3 Elemental Mapping of Plants and Phytoremediation

16.4 Phytoremediation

16.5 Biological Applications of LIBS

16.5.1 Wood Chemistry Response to Precipitation Variations

16.5.2 Wood Chemistry Response to Forest Fires

16.6 Quantitative Analysis for LIBS Data

16.6.1 PCA Methodology

16.6.2 PLS Methodology

References

17 Biomedical Applications of LIBS

Steven J. Rehse

17.1 Introduction

17.1.1 Motivation

17.1.2 Definition and Categorization of Biomedical LIBS Applications

17.2 Analysis of Hard/Calcified Tissues

17.2.1 Introduction

17.2.2 Calcified Tissues

17.2.3 Dental Studies (Tooth Enamel, Dental Caries)

17.2.4 Stones and Calculi

17.2.5 Fingernails

17.3 Analysis of Soft Tissues

17.3.1 Introduction

17.3.2 Organs

17.3.3 Cancerous/Malignant Tissues

17.3.4 Hair/Skin

17.4 Analysis of Biomedical Specimens

17.4.1 Introduction

17.4.2 Blood

17.4.3 Proteins

17.5 Analysis of Microorganisms Causing Human Disease

17.5.1 Introduction

17.5.2 Bacterial Pathogens

17.5.3 Viral Pathogens

17.5.4 Molds, Pollens, Amoeba

References
18 **Combustion Applications of Laser-Induced Breakdown Spectroscopy** .. 489
Fang Y. Yueh, Markandey M. Tripathi and Jagdish P. Singh
18.1 Introduction .. 489
18.2 Continuous Emission Monitor .. 490
18.3 Equivalence Ratio ... 495
18.4 Online Coal Analysis ... 497
18.5 Flame Temperature ... 500
18.6 Engine Health .. 501
18.7 Conclusions ... 505
References ... 506

19 **LIBS Analysis for Coal** .. 511
Carlos E. Romero and Robert De Saro
19.1 Introduction .. 512
19.2 LIBS Laboratory Experimental Results for Coal 516
 19.2.1 Apparatus .. 516
 19.2.2 Simulated Coal Samples ... 517
 19.2.3 Coal Samples with Variable Composition 518
19.3 LIBS Off-Line Coal Analysis at a Power Plant 522
19.4 LIBS On-Line Coal Analysis at a Power Plant 523
19.5 Prospects: LIBS in the Coal-Fired Power Generation Industry .. 525
References ... 526

20 **Cultural Heritage Applications of LIBS** 531
Demetrios Anglos and Vincent Detalle
20.1 Introduction .. 531
20.2 Instrumentation .. 535
 20.2.1 Mobile LIBS Instruments 537
 20.2.2 Hybrid LIBS Instruments 540
20.3 Case Studies ... 541
20.4 Future Outlook ... 549
References ... 550

Erratum to: Laser Induced Breakdown Spectroscopy for Analysis of Aerosols E1
Prasoon K. Diwakar and Pramod Kulkarni

Index .. 555

Short Biographies ... 565
Laser-Induced Breakdown Spectroscopy
Theory and Applications
Musazzi, S.; Perini, U. (Eds.)
2014, XXII, 565 p. 244 illus., 34 illus. in color., Hardcover
ISBN: 978-3-642-45084-6