Contents

1 Introduction .. 1
1.1 Research Status.. 3
 1.1.1 The Study on Soil Structure 3
 1.1.2 The Study on Vehicle Vibration Loading 3
 1.1.3 Dynamic Response of Vehicle Vibration Load 6
 1.1.4 Dynamic Properties of Soft Clay Soil Under
 Dynamic Loading ... 10
 1.1.5 Microstructure of Soft Clay Soil 13
 1.1.6 The Long-Term Settlement of Soft Clay
 Foundation Under Vehicle Vibration Loading 16
1.2 Research Content and Methodology 18
 1.2.1 Dynamic Response of Soft Clay Surrounding
 Subway Tunnel to Subway Traffic Loads 19
 1.2.2 Dynamic Characteristics of Soft Clay Under
 Subway Vibration Loads 19
 1.2.3 Microstructure Study of Soft Clay Under Subway
 Vibration Loads ... 19
 1.2.4 Numerical Simulation ... 20
 1.2.5 Settlement Prediction of Soil Surrounding
 Subway Tunnel Under Subway Vibration Loads 20
References ... 20

2 Field Tests ... 25
2.1 Introduction ... 25
2.2 Engineering Geology of Soft Soil in Shanghai 26
2.3 Program Design .. 28
 2.3.1 Selection of Testing Site 28
 2.3.2 Selection of Testing Instruments 28
 2.3.3 Stratigraphic Section and Instrument Installation 29
2.4 Results and Analysis .. 29
 2.4.1 Soil Response Frequency ... 30
 2.4.2 The Attenuation of Dynamic Response
 in Perpendicular Direction to Subway Tunnel Axis 32
 2.4.3 The Dynamic Response Development Along the Depth 34
 2.4.4 Development of Pore Pressure 35
 2.4.5 Mechanism Analysis of Pore Pressure
 Development Under Subway Traffic Loading 36
2.5 Chapter Summary ... 38
References ... 38

3 Laboratory Tests ... 41
 3.1 Introduction ... 41
 3.2 Pore Pressure Development .. 42
 3.2.1 Experimental Summary .. 43
 3.2.2 The Pore Water in Soft Clay 49
 3.2.3 The Pore Water Development Properties 53
 3.2.4 The Pore Water Pressure Attenuation Properties 58
 3.2.5 The Mechanism Analysis of Influence of Subway
 Vibration Loads on Pore Water Pressure 59
 3.3 Deformation Characteristics of Saturated Soft Soils 60
 3.3.1 Experimental Introduction 61
 3.3.2 The Factors on Deformation Under Cyclic Loads 65
 3.3.3 Summary .. 70
 3.4 Strength Characteristics of Saturated Soft Soils 71
 3.5 Creep Behavior of Soil Under Cyclic Loading (Tang et al. 2010) ... 72
 3.5.1 Test Apparatus and Samples 74
 3.5.2 Test Control Parameter and Procedures 74
 3.5.3 Test Procedures ... 75
 3.5.4 Composition of Clayey Creep Under Cyclic Loading 76
 3.5.5 The Change of Reversible Elastic Strain of Saturated Clay .. 81
 3.5.6 Variation of Accumulated Plastic Strain of Saturated Clay ... 83
 3.5.7 Variation of the Residual Pore Water Pressure 85
 3.5.8 Summaries .. 86
 3.6 Dynamic Stress-Strain Relationships 87
 3.7 Effective Principal Stress Variation 90
 3.7.1 Experimental Introduction 90
 3.7.2 The Variation of Effective Primary Stress
 with Loading Time .. 92
 3.7.3 The Variation of Shear Wave Velocity 95
 3.8 Mechanism Analysis ... 95
 3.9 Chapter Summary .. 97
References ... 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Research of Microstructure</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Qualitative Analysis</td>
<td>104</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Research Method</td>
<td>106</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Preparation of Samples</td>
<td>107</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Basic Characteristics of the Soil Samples</td>
<td>108</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Qualitative Analysis of Observed Result</td>
<td>109</td>
</tr>
<tr>
<td>4.3</td>
<td>Quantitative Analysis</td>
<td>126</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Research Method</td>
<td>127</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Fractal Parameters of MIP Results</td>
<td>131</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The Characteristics of Pore Variation in Undisturbed Soft Clay During the Process of Mercury Intrusion</td>
<td>132</td>
</tr>
<tr>
<td>4.3.4</td>
<td>The Characteristics of Pore Variation in Undisturbed Soft Clay During the Process of Mercury Extrusion</td>
<td>135</td>
</tr>
<tr>
<td>4.3.5</td>
<td>The Variation of Pore Structure Characteristic Parameters in Saturated Soft Clay Under Vibration Loading</td>
<td>136</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Fractal Model and Fractal Dimension</td>
<td>140</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlation Analysis Between Microstructure and Macroscopic Deformation Properties of Saturated Soft Clay Under Subway Loading</td>
<td>147</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Correlation Analysis of Pore Microstructure Parameter and Macroscopic Force</td>
<td>147</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Correlation Analysis of Pore Microstructure Parameters and Macroscopic Deformation</td>
<td>149</td>
</tr>
<tr>
<td>4.5</td>
<td>Chapter Summary</td>
<td>151</td>
</tr>
<tr>
<td>5</td>
<td>Finite Element Modeling</td>
<td>155</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>5.2</td>
<td>Finite Element Analysis Software</td>
<td>156</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Numerical Method</td>
<td>156</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The Finite Element Method and ANSYS</td>
<td>156</td>
</tr>
<tr>
<td>5.3</td>
<td>Theoretical Analysis</td>
<td>157</td>
</tr>
<tr>
<td>5.3.1</td>
<td>General Equations of the Dynamic Analysis</td>
<td>158</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Dynamic Finite Element Analysis</td>
<td>161</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Static-Dynamic Analysis of Subway-Soil System</td>
<td>166</td>
</tr>
<tr>
<td>5.4</td>
<td>Simulation of the Dynamic Loading Induced by the Subway Train</td>
<td>169</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Generation Mechanism</td>
<td>170</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Simplified Model for Subway Train</td>
<td>173</td>
</tr>
<tr>
<td>5.4.3</td>
<td>The Simulation of Subway Train Loading</td>
<td>173</td>
</tr>
</tbody>
</table>

References: 152
Table of Contents

5.5 Model Development .. 177
5.5.1 Introduction to the Model 177
5.5.2 Mesh Generation in FEM Model 179
5.5.3 Material Parameters .. 184
5.6 Viscoelastic Artificial Boundary 184
5.7 The Time Integral Step ... 186
5.8 The Results of Transient Analysis 186
5.9 Chapter Summary ... 189
References ... 190

6 Settlement Prediction of Soils Surrounding Subway Tunnel 191
6.1 Introduction ... 191
6.2 Analysis on Subway Tunnel Settlement During
Tunneling in Soft Soil ... 192
6.2.1 Factors ... 192
6.2.2 Scope of Settlement and Settlement Tank 194
6.2.3 Relationship Between Settlement and Grouting Quantity 195
6.2.4 Estimation of the Ground Pre-settlement 198
6.2.5 Summary of Early Settlement’s Analysis 200
6.3 Analysis of Long-Term Settlement of Subway Tunnel in Soft Soil .. 200
6.3.1 Factors Affecting Long-Term Settlement
of Subway Tunnel in Soft Soil .. 200
6.3.2 Mechanism Analysis of Long-Term Additional Settlement in Foundation Caused by Subway Load 202
6.4 Applications of Gray Prediction Theory in Predicting
Long-Term Settlement of Subway Tunnel 203
6.4.1 Research Backgrounds and Introduction 203
6.4.2 Methodology of Gray Prediction Theory 206
6.4.3 Model Checking .. 209
6.4.4 Applications of Prediction Model 210
6.4.5 Discussions and Error Analyses 213
6.5 Effective Stress Analysis of Long-Term Settlement in Tunnel 219
6.6 Chapter Summary ... 221
References ... 222

7 Conclusions and Prospects .. 225
7.1 Conclusions ... 225
7.2 Prospects for Further Study ... 228

Appendix: Major Published Works of the Book Author 229

Index ... 239
Dynamic Response and Deformation Characteristic of Saturated Soft Clay under Subway Vehicle Loading
Tang, Y.; Zhou, J.; Ren, X.; Yang, Q.
2014, XXIII, 241 p. 132 illus., 62 illus. in color., Hardcover
ISBN: 978-3-642-41986-7