Contents

1 Introduction to Cavity Enhanced Absorption Spectroscopy 1
 Daniele Romanini, Irène Ventrillard, Guillaume Méjean, Jérôme
 Morville, and Erik Kerstel
 1.1 Introduction .. 1
 1.1.1 A Short History of Cavity Enhanced Methods 3
 1.1.2 A Review of Reviews on CEAS Developments and
 Applications ... 13
 1.2 The High Finesse Optical Resonator 15
 1.2.1 Intensity Transmitted by a Cavity: A Simplified
 One-Dimensional Model 15
 1.2.2 The Real World of Transverse Modes 23
 1.3 Detection Limit, Noise, Fringes, and More 26
 1.4 Coupling of Light into a High Finesse Optical Cavity 30
 1.4.1 Single Mode Injection: From the Ideal Monochromatic
 Laser to the Realistic Noisy Laser 30
 1.4.2 Multi-mode Injection (Longitudinal and Transverse):
 Incoherent Pulsed Lasers 38
 1.4.3 Multi-mode Injection (Longitudinal): Coherent Pulsed
 Lasers, or Frequency Combs 42
 1.5 Conclusion .. 51
 References ... 51

2 Detection and Characterization of Reactive Chemical
 Intermediates Using Cavity Ringdown Spectroscopy 61
 Neal Kline and Terry A. Miller
 2.1 Introduction .. 61
 2.2 The Chemistry and Spectroscopy of Peroxy Radicals 63
 2.3 CRDS Spectrometers and Results 65
 2.3.1 Room Temperature, Moderate Resolution CRDS of Ethyl
 Peroxy .. 66
 2.3.2 Jet-Cooled, High Resolution CRDS of Ethyl Peroxy 71
4.5 Ultra High-Sensitivity SCAR Molecular Spectroscopy:
 Application to Detection of Very Rare Species 157
References ... 160
5 Cavity Enhanced Absorption Spectroscopy with Optical Feedback 163
 Jérôme Morville, Daniele Romanini, and Erik Kerstel
 5.1 Introduction .. 163
 5.2 An Intuitive Picture of the Technique 164
 5.3 Theoretical Foundations of OF-CEAS 170
 5.3.1 Optical Feedback: Model Equations 170
 5.3.2 The Locked Frequency Behavior and the Resulting
 Cavity Transmission Pattern 174
 5.3.3 Optical Feedback Phase and the Cavity Transmission
 Beating Patterns ... 176
 5.3.4 The OF-CEAS Operating Conditions 178
 5.3.5 Locked-Laser Linewidth and Optical Feedback Phase
 Tolerance .. 179
 5.3.6 The High Frequency Scanning Speed of OF-CEAS 180
 5.4 Implementation ... 183
 5.4.1 Different Laser Sources for OF-CEAS 183
 5.4.2 OF-CEAS Schemes 185
 5.5 Absorption Scale Calibration by a Single Ring-Down 189
 5.6 Typical Performance of OF-CEAS 194
 5.7 Precursory Works on OF-Locking of a Semiconductor Laser
 to an Optical Cavity ... 199
 5.7.1 Laser Stabilization 199
 5.7.2 Optical-Feedback Cavity Ring-Down Spectroscopy 200
 5.8 Applications .. 202
 5.8.1 Trace Gas Detection 202
 5.8.2 Isotope Ratio Analyses 204
 5.8.3 Aerosol Studies 205
 5.8.4 Other Applications 205
 5.9 Conclusions ... 205
References ... 207
6 NICE-OHMS—Frequency Modulation Cavity-Enhanced
 Spectroscopy—Principles and Performance 211
 Ove Axner, Patrick Ehlers, Aleksandra Foltynowicz, Isak Silander, and
 Junyang Wang
 6.1 Introduction .. 211
 6.2 Theory—NICE-OHMS Analytical Signals 213
 6.2.1 Frequency Modulation Spectroscopy 213
 6.2.2 Doppler-Broadened NICE-OHMS 214
 6.2.3 Sub-Doppler NICE-OHMS 225
 6.3 Experimental Implementation 230
 6.3.1 Generic Setup ... 230
6.3.2 Fiber-Laser-Based NICE-OHMS 233

6.4 Performance ... 236

6.4.1 Concentration, Pressure, and Power Dependence of the Analytical Signal 236

6.4.2 Noise and Background Signals 238

6.4.3 Detection Sensitivity .. 244

6.5 Summary, Conclusions, and Future Outlook 246

References ... 248

7 Applications of NICE-OHMS to Molecular Spectroscopy 253
Brian M. Siller and Benjamin J. McCall

7.1 Introduction .. 253

7.2 Laser Systems ... 255

7.2.1 Near-Infrared .. 255

7.2.2 Mid-Infrared ... 259

7.3 Molecules .. 261

7.3.1 Stable Neutral Molecules 262

7.3.2 Radicals and Ions ... 265

7.4 Future Prospects ... 269

References ... 269

8 Cavity-Enhanced Direct Frequency Comb Spectroscopy 271
P. Masłowski, K.C. Cossel, A. Foltynowicz, and J. Ye

8.1 Introduction .. 271

8.2 Frequency Comb Sources 274

8.2.1 Mode-Locked Lasers 275

8.2.2 Indirect Sources ... 277

8.2.3 Other Types of OFC Sources 278

8.2.4 Typical Comb Sources 279

8.3 Comb-Cavity Coupling .. 282

8.3.1 Comb-Cavity Coupling—Tight Locking Scheme 284

8.3.2 Comb-Cavity Coupling—Swept Coupling Scheme 287

8.3.3 Effect of Comb-Cavity Resonance Mismatch on the Observed Line Shape 289

8.4 Detection Methods .. 290

8.4.1 Broadband Cavity Ringdown Spectroscopy 293

8.4.2 VIPA Spectrometer 295

8.4.3 Fourier-Transform Spectroscopy 296

8.4.4 Sensitivity of CE-DFCS Detection Methods 299

8.5 Applications .. 300

8.5.1 Breath Analysis .. 300

8.5.2 Trace Water in Arsine Vapor 302

8.5.3 Trace Detection of Hydrogen Peroxide 303

8.5.4 Comb-Mode Resolved Spectroscopy 308

8.6 Summary ... 312

References ... 312
Contents

9 Whispering Gallery Mode Biomolecular Sensors 323
 Yuqiang Wu and Frank Vollmer
 9.1 Nano-Biotechnology: Sensors Interface the Molecular World 323
 9.2 Whispering Gallery Mode Resonator Biosensors 325
 9.2.1 Whispering Gallery Mode 325
 9.2.2 Reactive Sensing Principle 329
 9.3 Detection of Bio-Samples 334
 9.3.1 Protein Detection .. 334
 9.3.2 Single Virus Detection 337
 9.3.3 Multiplexed Sensing Platform 339
 9.3.4 WGM Sensors with Plasmonic Enhancement 340
 9.4 Outlook .. 342
 9.5 Keywords and Notes .. 343
 References .. 345

10 Cavity-Enhanced Spectroscopy on Silica Microsphere Resonators 351
 Jack A. Barnes, Gianluca Gagliardi, and Hans-Peter Loock
 10.1 Introduction: Microcavities in Chemical Sensing 352
 10.2 Theoretical Background .. 353
 10.2.1 Modes Inside a Dielectric Sphere 353
 10.2.2 Estimate of the Volume Fraction of the Evanescent Wave 355
 10.2.3 Excitation and Detection of Cavity Modes 357
 10.2.4 Resonance Shifts in WGMs due to External Perturbations 359
 10.2.5 Loss Mechanisms .. 361
 10.2.6 Determination of Optical Loss Using Cavity Ring-Down Methods 362
 10.3 Experimental Studies .. 371
 10.3.1 Introduction .. 371
 10.3.2 Properties and Spectra of Ethylene Diamine 371
 10.3.3 Experiment .. 372
 10.3.4 Photothermal Effect .. 375
 10.3.5 Determination of Ethylene Diamine Coverage and Absorption 376
 References .. 380

11 Cavity Ringdown Spectroscopy for the Analysis of Small Liquid Volumes .. 385
 Claire Vallance and Cathy M. Rushworth
 11.1 Introduction .. 385
 11.2 Fundamentals of Cavity Ringdown and Cavity-Enhanced
 Absorption Spectroscopy .. 387
 11.2.1 General Principles of Cavity Ringdown Spectroscopy 387
 11.2.2 General Principles of Cavity-Enhanced Absorption
 Spectroscopy .. 388
 11.2.3 Detection Limits in Cavity Ringdown and
 Cavity-Enhanced Absorption Measurements 389
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Applying Cavity-Enhanced Spectroscopies to the Liquid Phase</td>
<td>390</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Cavity Configurations for Liquid-Phase Analysis</td>
<td>391</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Broadband Cavity Ringdown Techniques</td>
<td>395</td>
</tr>
<tr>
<td>11.4</td>
<td>Example Application: Microfluidic Sensors</td>
<td>397</td>
</tr>
<tr>
<td>11.5</td>
<td>Example Application: Sensing of Trace Compounds in Water</td>
<td>402</td>
</tr>
<tr>
<td>11.6</td>
<td>The Future</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>406</td>
</tr>
</tbody>
</table>

12 Fiber Loop Ringdown Sensors and Sensing

Chuji Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>411</td>
</tr>
<tr>
<td>12.2</td>
<td>Fiber Loop Ringdown (FLRD) Basics</td>
<td>412</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Principle of FLRD</td>
<td>412</td>
</tr>
<tr>
<td>12.2.2</td>
<td>FLRD—A Uniform Sensing Scheme</td>
<td>414</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Configuration of the FLRD Sensing Scheme</td>
<td>414</td>
</tr>
<tr>
<td>12.2.4</td>
<td>FLRD Sensing Signal</td>
<td>416</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Optical Losses in a Fiber Loop and Detection Sensitivity of FLRD</td>
<td>417</td>
</tr>
<tr>
<td>12.3</td>
<td>Fabrication of a FLRD Sensor Head</td>
<td>420</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Sensing Mechanisms</td>
<td>421</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Sensor Heads</td>
<td>424</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Sensing Parameters (Functions)</td>
<td>431</td>
</tr>
<tr>
<td>12.4</td>
<td>Individual FLRD Sensors</td>
<td>431</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Chemical Sensors</td>
<td>431</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Physical Sensors</td>
<td>436</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Biomedical and Biological Sensors</td>
<td>440</td>
</tr>
<tr>
<td>12.5</td>
<td>Applications of FLRD Sensors</td>
<td>442</td>
</tr>
<tr>
<td>12.5.1</td>
<td>FLRD Instrumentation</td>
<td>442</td>
</tr>
<tr>
<td>12.5.2</td>
<td>FLRD in Remote Sensing</td>
<td>444</td>
</tr>
<tr>
<td>12.6</td>
<td>Future FLRD Sensor Network</td>
<td>450</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Parallel Configuration</td>
<td>451</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Serial Configuration</td>
<td>452</td>
</tr>
<tr>
<td>12.6.3</td>
<td>Large-Scale FLRD Sensing Platform</td>
<td>453</td>
</tr>
<tr>
<td>12.7</td>
<td>Conclusion</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>455</td>
</tr>
</tbody>
</table>

13 Fiber-Optic Resonators for Strain-Acoustic Sensing and Chemical Spectroscopy

Saverio Avino, Antonio Giorgini, Paolo De Natale, Hans-Peter Loock, and Gianluca Gagliardi

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>464</td>
</tr>
<tr>
<td>13.2</td>
<td>Strain Sensing</td>
<td>464</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Fiber Bragg Grating Fabry-Pérot Resonators</td>
<td>464</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Fiber-Loop Cavities</td>
<td>468</td>
</tr>
<tr>
<td>13.2.3</td>
<td>(\pi)-Phase Shifted Fiber Bragg Gratings</td>
<td>469</td>
</tr>
<tr>
<td>13.3</td>
<td>Fiber Optic Sensors for Musical Recordings</td>
<td>473</td>
</tr>
</tbody>
</table>
13.4 Evanescent-Wave Chemical Sensing 476
 13.4.1 Optical Fiber Loop Spectroscopy 478
13.5 Conclusions .. 481
References .. 482

14 Broadband Cavity-Enhanced Absorption Spectroscopy
with Incoherent Light 485
A.A. Ruth, S. Dixneuf, and R. Raghunandan
14.1 Introduction ... 485
14.2 Broadband Cavity-Based Absorption Spectroscopy 487
 14.2.1 Classification of Experimental Broadband Approaches . 487
 14.2.2 Time-Dependent Broadband Methods 488
 14.2.3 Intensity-Dependent Broadband Methods 489
14.3 Experimental Aspects 493
 14.3.1 Light Source Considerations 493
 14.3.2 Cavity Considerations 497
 14.3.3 Detection Schemes 505
14.4 Summary of Literature 510
References .. 512

Index .. 519
Cavity-Enhanced Spectroscopy and Sensing
Gagliardi, G.; Loock, H.-P. (Eds.)
2014, XIX, 527 p. 206 illus., 97 illus. in color., Hardcover
ISBN: 978-3-642-40002-5