Contents

Part I Fundamentals

1. **Airborne Wind Energy: Basic Concepts and Physical Foundations**
 Moritz Diehl
 p. 3

2. **Traction Power Generation with Tethered Wings**
 Roland Schmehl, Michael Noom, Rolf van der Vlugt
 p. 23

3. **Pumping Cycle Kite Power**
 Rolf H. Luchsinger
 p. 47

4. **Efficiency of Traction Power Conversion Based on Crosswind Motion**
 Ivan Argatov and Risto Silvennoinen
 p. 65

5. **An Introduction to Meteorology for Airborne Wind Energy**
 Cristina L. Archer
 p. 81

6. **Kites: Pioneers of Atmospheric Research**
 Werner Schmidt, William Anderson
 p. 95

7. **Financing Strategies for Airborne Wind Energy**
 Udo Zillmann, Sebastian Hach
 p. 117

Part II System Modeling, Optimization and Control

8. **Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design**
 Michael Erhard, Hans Strauch
 p. 141

9. **On Modeling, Filtering and Automatic Control of Flexible Tethered Wings for Airborne Wind Energy**
 Lorenzo Fagiano, Aldo U. Zgraggen, Manfred Morari
 p. 167
10 Modeling of Airborne Wind Energy Systems in Natural Coordinates
Sébastien Gros, Moritz Diehl

11 Numerical Trajectory Optimization for Airborne Wind Energy
Systems Described by High Fidelity Aircraft Models 205
Greg Horn, Sébastien Gros, Moritz Diehl

12 Model Predictive Control of Rigid-Airfoil Airborne Wind Energy
Systems .. 219
Mario Zanon, Sébastien Gros, Moritz Diehl

13 Airborne Wind Energy Conversion Systems with Ultra High Speed
Mechanical Power Transfer .. 235
Leo Goldstein

14 Model-Based Efficiency Analysis of Wind Power Conversion by a
Pumping Kite Power System ... 249
Uwe Fechner, Roland Schmehl

15 Economics of Pumping Kite Generators 271
Jannis Heilmann, Corey Houle

Part III Analysis of Flexible Kite Dynamics

16 Aeroelastic Simulation of Flexible Membrane Wings based on
Multibody System Dynamics .. 287
Jeroen Breukels, Roland Schmehl, Wubbo Ockels

17 Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible
Membrane Traction Kite ... 307
Allert Bosch, Roland Schmehl, Paolo Tiso and Daniel Rixen

18 Simulation Based Wing Design for Kite Power 325
Flavio Gohl, Rolf H. Luchsinger

19 Estimation of the Lift-to-Drag Ratio Using the Lifting Line
Method: Application to a Leading Edge Inflatable Kite 339
Richard Leloup, Kostia Roncin, Guilhem Bles, Jean-Baptiste Leroux,
Christian Jochum, Yves Parlier

Part IV Implemented Concepts

20 Application of an Automated Kite System for Ship Propulsion and
Power Generation ... 359
Falko Fritz
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Design and Testing of a 60 kW Yo-Yo Airborne Wind Energy Generator</td>
<td>Mario Milanese, Franco Taddei, Stefano Milanese</td>
<td>373</td>
</tr>
<tr>
<td>22</td>
<td>Modeling and Testing of a Kite-Powered Water Pump</td>
<td>David J. Olinger, Jitendra S. Goela, Gretar Tryggvason</td>
<td>387</td>
</tr>
<tr>
<td>23</td>
<td>Design and Experimental Characterization of a Pumping Kite Power System</td>
<td>Rolf van der Vlugt, Johannes Peschel, Roland Schmehl</td>
<td>403</td>
</tr>
<tr>
<td>25</td>
<td>Combining Kites and Rail Technology into a Traction-Based Airborne Wind Energy Plant</td>
<td>Uwe Ahrens, Björn Pieper, Clemens Töpfer</td>
<td>437</td>
</tr>
<tr>
<td>26</td>
<td>Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System</td>
<td>Richard Ruiterkamp and Sören Sieberling</td>
<td>443</td>
</tr>
<tr>
<td>27</td>
<td>An Experimental Test Setup for Advanced Estimation and Control of an Airborne Wind Energy System</td>
<td>Kurt Geebelen, Milan Vukov, Andrew Wagner, Hammad Ahmad, Mario Zanon, Sebastien Gros, Dirk Vandepitte, Jan Swevers, Moritz Diehl</td>
<td>459</td>
</tr>
<tr>
<td>28</td>
<td>Analysis and Flight Test Validation of High Performance Airborne Wind Turbines</td>
<td>Damon Vander Lind</td>
<td>473</td>
</tr>
<tr>
<td>30</td>
<td>Lighter-Than-Air Wind Energy Systems</td>
<td>Chris Vermillion, Ben Glass, Adam Rein</td>
<td>501</td>
</tr>
</tbody>
</table>

Part V Component Design

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Ram-air Wing Design Considerations for Airborne Wind Energy</td>
<td>Storm Dunker</td>
<td>517</td>
</tr>
</tbody>
</table>
32 Conceptual Design of Textile Kites Considering Overall System Performance ... 547
Xaver Paulig, Merlin Bungart, Bernd Specht

33 Airborne Wind Energy Tethers with High-Modulus Polyethylene Fibers ... 563
Rigo Bosman, Valerie Reid, Martin Vlasblom, Paul Smeets

34 Non-Reversing Generators in a Novel Design for Pumping Mode Airborne Wind Energy Farm .. 587
Joseph Coleman, Hammad Ahmad, Emmanuel Pican, Daniel Toal

35 Software System Architecture for Control of Tethered Kites 599
Jochen Maas and Michael Erhard
Airborne Wind Energy
Ahrens, U.; Diehl, M.; Schmehl, R. (Eds.)
2013, XXIII, 611 p. 337 illus., 161 illus. in color.,
Hardcover
ISBN: 978-3-642-39964-0