Contents

The Abel Prize—The Missing Nobel in Mathematics? 1
Kim G. Helsvig
1 Science Prizes in Historical Perspective 2
2 A National Icon .. 4
3 The Initiative .. 6
4 Mobilization .. 9
5 The Abel Prize “Working Group” 10
6 Scientific Legitimization and Support 12
7 Political Lobbying ... 14
8 Breakthrough ... 17
9 High Expectations ... 18
10 Nobel Level? .. 22
11 Conclusion—And the Need for Future Adjustments? 25
References ... 27

2008 John G. Thompson and Jacques Tits

Some Reflections ... 31
John G. Thompson

A Biography of Jacques Tits .. 35
Francis Buekenhout
1 1930–1944 ... 35
1.1 A Belgian Mathematician 35
1.2 Ancestors ... 36
1.3 Parents .. 36
1.4 Grandparents .. 37
1.5 Child Prodigy—Always Ahead of His Age and
 of His Time ... 38
1.6 Charles Nootens and Petit Jacques 39
2 1945–1949 ... 40
The Work of John Griggs Thompson: A Survey

Richard Lyons and Robert M. Guralnick

1 Thompson’s Thesis, and Local Analysis
2 The Thompson J-Subgroup and Weak Closure Arguments
3 Groups of Odd Order Are Solvable
4 N-Groups and Minimal Simple Groups
5 The B-Conjecture and the Grand Conjecture
6 Factorizations, Quadratic Action, and Quadratic Pairs
7 The Ree Groups
8 The Finite Sporadic Simple Thompson Group Th, also Known as F_3
9 “Elementary” Group-Theoretic Results
10 The Inverse Galois Problem
11 The Genus of a Permutation Group
12 Representation Theory
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Projective Planes</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>Cosets</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td>Divisor Matrix</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>Other Work</td>
<td>80</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

A Report on the Scientific Contributions of Jacques Tits 87
Francis Buekenhout

1. Introduction 87
2. The Projective Line 88
3. The Cremona Plane Made Invariant Under the Cremona Group 89
4. Lie Groups and the Riemann–Helmholtz–Lie Problem 89
5. Doubly Homogeneous Spaces, and Homogeneous and Isotropic Spaces 91
6. Geometric Interpretation of the Five Exceptional Simple Lie Groups and the Magic Square 92
7. A World of Incidence Geometries 92
8. Generalized Polygons 93
9. Moufang Polygons 93
10. General Theory of Coxeter Groups 94
12. Applications of Buildings 96
13. Affine Buildings 96
14. Diagram Geometries and Sporadic Groups 97
15. The Local Approach to Buildings 97
16. Free Constructions 97
17. Algebraic Groups 98
19. Moufang Polygons: Thirty Years Later 98
References 99

List of Publications for John Griggs Thompson 101

List of Publications for Jacques Tits 109

Curriculum Vitae for John Griggs Thompson 123

Curriculum Vitae for Jacques Tits 125

2009 Mikhail Gromov

A Few Recollections 129
Mikhail Gromov

A Few Snapshots from the Work of Mikhail Gromov 139
1. Introduction. Conceptual Thinking (by Dima Burago) 140
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Gromov’s Geometry (by Anatoly Vershik)</td>
<td>143</td>
</tr>
<tr>
<td>3</td>
<td>The Gromomorphism $SU \to US$ (by Tony Phillips)</td>
<td>148</td>
</tr>
<tr>
<td>4</td>
<td>The h-Principle (by Yasha Eliashberg)</td>
<td>149</td>
</tr>
<tr>
<td>4.1</td>
<td>Holonomic Approximation</td>
<td>150</td>
</tr>
<tr>
<td>4.2</td>
<td>Removal of Singularities</td>
<td>156</td>
</tr>
<tr>
<td>4.3</td>
<td>Convex Integration</td>
<td>157</td>
</tr>
<tr>
<td>5</td>
<td>The Homotopy Principle in Complex Analysis (by Franc Forstnerič)</td>
<td>161</td>
</tr>
<tr>
<td>5.1</td>
<td>The Oka–Grauert Principle</td>
<td>161</td>
</tr>
<tr>
<td>5.2</td>
<td>Gromov’s Oka Principle</td>
<td>162</td>
</tr>
<tr>
<td>5.3</td>
<td>From Elliptic Manifolds to Oka Manifolds and Oka Maps</td>
<td>164</td>
</tr>
<tr>
<td>6</td>
<td>Soft and Hard Symplectic Geometry (by Yasha Eliashberg)</td>
<td>165</td>
</tr>
<tr>
<td>6.1</td>
<td>Gromov’s Alternative</td>
<td>166</td>
</tr>
<tr>
<td>6.2</td>
<td>Proof of the Arnold Fixed Point Conjecture for the $2n$-Torus</td>
<td>169</td>
</tr>
<tr>
<td>6.3</td>
<td>Advent of Holomorphic Curves</td>
<td>170</td>
</tr>
<tr>
<td>6.4</td>
<td>Flexible Side of Symplectic Geometry is Still Alive</td>
<td>180</td>
</tr>
<tr>
<td>7</td>
<td>The Waist Inequality in Gromov’s Work (by Larry Guth)</td>
<td>181</td>
</tr>
<tr>
<td>7.1</td>
<td>Why is the Waist Inequality Hard?</td>
<td>182</td>
</tr>
<tr>
<td>7.2</td>
<td>A Quick History of the Waist Inequality, Part 1</td>
<td>183</td>
</tr>
<tr>
<td>7.3</td>
<td>Combinatorial Analogues of the Waist Inequality</td>
<td>184</td>
</tr>
<tr>
<td>7.4</td>
<td>Topological Analogues of the Waist Inequality</td>
<td>185</td>
</tr>
<tr>
<td>7.5</td>
<td>A Quick History of the Waist Inequality, Part 2</td>
<td>187</td>
</tr>
<tr>
<td>7.6</td>
<td>Quantitative Topology</td>
<td>188</td>
</tr>
<tr>
<td>7.7</td>
<td>Gromov’s Short Proof of the Waist Inequality</td>
<td>190</td>
</tr>
<tr>
<td>7.8</td>
<td>Gromov’s Proof of Point Selection</td>
<td>193</td>
</tr>
<tr>
<td>8</td>
<td>Quantitative Topology and Quantitative Geometric Calculus</td>
<td>196</td>
</tr>
<tr>
<td>8.1</td>
<td>Quantitative Topology</td>
<td>196</td>
</tr>
<tr>
<td>8.2</td>
<td>Quantitative Geometric Calculus of Variations</td>
<td>201</td>
</tr>
<tr>
<td>8.3</td>
<td>Gromov’s Filling Technique</td>
<td>204</td>
</tr>
<tr>
<td>8.4</td>
<td>Slicing Riemannian Manifolds</td>
<td>205</td>
</tr>
<tr>
<td>8.5</td>
<td>Filling Riemannian Manifolds</td>
<td>207</td>
</tr>
<tr>
<td>9</td>
<td>Geometric Group Theory (by Mladen Bestvina)</td>
<td>208</td>
</tr>
<tr>
<td>9.1</td>
<td>Groups of Polynomial Growth</td>
<td>208</td>
</tr>
<tr>
<td>9.2</td>
<td>Gromov–Hausdorff Limits</td>
<td>210</td>
</tr>
<tr>
<td>9.3</td>
<td>Groups as Metric Spaces and Quasi-isometries</td>
<td>212</td>
</tr>
<tr>
<td>9.4</td>
<td>$CAT(-1)$ and $CAT(0)$ Spaces</td>
<td>212</td>
</tr>
<tr>
<td>9.5</td>
<td>Hyperbolization of Polyhedra</td>
<td>213</td>
</tr>
<tr>
<td>9.6</td>
<td>Hyperbolic Groups</td>
<td>214</td>
</tr>
<tr>
<td>9.7</td>
<td>Isoperimetric Functions</td>
<td>215</td>
</tr>
<tr>
<td>9.8</td>
<td>L_2-Cohomology</td>
<td>216</td>
</tr>
<tr>
<td>9.9</td>
<td>Random Groups</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>Gromov’s Work on Manifolds of Positive Scalar Curvature (by John Roe)</td>
<td>221</td>
</tr>
</tbody>
</table>
Contents

10.1 Introduction ... 221
10.2 Simply-Connected Compact Manifolds 222
10.3 Beyond Simple Connectivity 223
10.4 Macroscopic Dimension and K-Area 225
References ... 227

List of Publications for Mikhail Leonidovich Gromov 235
Curriculum Vitae for Mikhail Leonidovich Gromov 245

2010 John Torrence Tate

Autobiography .. 249
John Tate

The Work of John Tate .. 259
J.S. Milne

Notations ... 259
1 Hecke L-Series and the Cohomology of Number Fields 260
1.1 Background ... 260
1.2 Tate’s Thesis and the Local Constants 262
1.3 The Cohomology of Number Fields 265
1.4 The Cohomology of Profinite Groups 269
1.5 Duality Theorems .. 270
1.6 Expositions .. 273
2 Abelian Varieties and Curves 273
2.1 The Riemann Hypothesis for Curves 273
2.2 Heights on Abelian Varieties 274
2.3 The Cohomology of Abelian Varieties 277
2.4 Serre-Tate Liftings of Abelian Varieties 280
2.5 Mumford-Tate Groups and the Mumford-Tate Conjecture 281
2.6 Abelian Varieties over Finite Fields (Weil, Tate, Honda Theory) .. 283
2.7 Good Reduction of Abelian Varieties 284
2.8 CM Abelian Varieties and Hilbert’s Twelfth Problem 285
3 Rigid Analytic Spaces 286
3.1 The Tate Curve ... 287
3.2 Rigid Analytic Spaces 288
4 The Tate Conjecture .. 290
4.1 Beginnings .. 291
4.2 Statement of the Tate Conjecture 292
4.3 Homomorphisms of Abelian Varieties 293
4.4 Relation to the Conjectures of Birch and Swinnerton-Dyer 295
4.5 Poles of Zeta Functions 296
4.6 Relation to the Hodge Conjecture 298
5 Lubin-Tate Theory and Barsotti-Tate Group Schemes 299
5.1 Formal Group Laws and Applications 299
2.1 Kneading Theory 376
2.2 Milnor’s Attractors 377
2.3 Self-similarity and Hairiness of the Mandelbrot Set 379
2.4 Beyond the Quadratic Family 381
2.5 Two-Dimensional Dynamics 385
2.6 Art Gallery 388

References .. 389

John W. Milnor’s Work on the Classification of Differentiable Manifolds 393
L.C. Siebenmann
1 Some Preliminaries 393
2 The Discovery of Exotic 7-Spheres 395
 2.1 Synopsis 395
 2.2 1956: Why the Surprise? Some History 396
 2.3 Milnor’s Incendiary 1956 Article Appears 398
 2.4 From Thom’s Cobordism to Diffeomorphism? 398
 2.5 Milnor’s Test Manifolds 399
 2.6 Towards an Easy ‘Endoscopic’ Classification of these 8-Manifolds 400
 2.7 Towards a Classification of the 7-Manifolds $M(a,b)$ 401
 2.8 Milnor’s SO(4) Bundle Notations 402
 2.9 The First Pontrjagin Class 403
 2.10 Exotic Homotopy 7-Spheres Appear 406
 2.11 Milnor’s Invariant λ and Its Refinement μ 407
 2.12 Weak Equivalences Among the SO(4) Disk Bundles 409
 2.13 Twisted Spheres Appear 411
 2.14 Conjecturally Nonsmoothable Manifolds Appear ... 412
 2.15 Comments on Motivation and Strategy 413
 2.16 Smale’s Dramatic Explanation of Milnor’s ‘deus ex machina’ 414
3 The Early Achievements of Surgery 415
 3.1 A Rough Description of Surgery 415
 3.2 The Springtime of Surgery 416
 3.3 The First Flowering of Surgery 417
 3.4 An Exact Sequence Entrapping Θ_n, for $n \geq 5$ 420
 3.5 Analysis of the Subgroup bP of Θ_n 421
 3.6 Complements Concerning Boundaries of Parallelizable Manifolds 423
4 A Metamorphosis 425
 4.1 Milnor’s Microbundles 425
 4.2 Surgery for Classical Smooth Manifolds 426
 4.3 Further Extensions of Surgery 426
 4.4 Conjectures 427

References .. 427

List of Publications for John Willard Milnor 435
Curriculum Vitae for John Willard Milnor .. 447

2012 Endre Szemerédi

Autobiography ... 451
Endre Szemerédi

The Mathematics of Endre Szemerédi 459
W.T. Gowers
1 Introduction ... 459
2 Szemerédi’s Theorem .. 460
 2.1 Sketch Proof of Szemerédi’s Theorem when $k = 3$ 461
 2.2 What Happens when the Progressions Are Longer? 463
3 Szemerédi’s Regularity Lemma .. 464
 3.1 Quasirandom Graphs and the Counting Lemma 465
 3.2 Statement of the Regularity Lemma 465
 3.3 Sketch Proof of the Regularity Lemma 466
 3.4 The Regularity Lemma and Szemerédi’s Theorem 468
4 The Triangle Removal Lemma ... 470
 4.1 Sketch Proof of the Triangle Removal Lemma 470
 4.2 Applications of the Triangle Removal Lemma 471
5 A Sharp Upper Bound for the Ramsey Number $R(3, k)$ 473
 5.1 Choosing an Independent Set More Carefully 474
6 A Counterexample to Heilbronn’s Triangle Conjecture 477
7 An Optimal Parallel Sorting Network 480
8 A Theorem on Point-Line Incidences 484
 8.1 Székely’s Proof of the Szemerédi–Trotter Theorem 485
 8.2 An Application of the Szemerédi–Trotter Theorem 486
 8.3 What Are the Extremal Sets in the Szemerédi–Trotter
 Theorem? ... 487
9 The Probability that a Random ± 1 Matrix is Singular ... 487
 9.1 The Need to Consider Dependences 488
 9.2 The Main Idea .. 490
 9.3 Subsequent Improvements 491
10 Conclusion ... 491
References ... 492

List of Publications for Endre Szemerédi 495

Curriculum Vitae for Endre Szemerédi 507

A Letter from Niels Henrik Abel to August Leopold Crelle

Abel and the Theory of Algebraic Equations 517
Christian Skau
1 Historical Context .. 517
2 Correspondence with Legendre 519
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 The Addition Theorem</td>
<td>520</td>
</tr>
<tr>
<td>4 Algebraic Equations—Primitive Elements</td>
<td>522</td>
</tr>
<tr>
<td>5 Irreducibility Principle</td>
<td>525</td>
</tr>
<tr>
<td>6 The Galois Group</td>
<td>526</td>
</tr>
<tr>
<td>7 The Fundamental Theorem and Solvability Criterion</td>
<td>529</td>
</tr>
<tr>
<td>8 Elliptic Functions and Algebraic Equations</td>
<td>530</td>
</tr>
<tr>
<td>9 Transformation Theory and Teilingsgleichungen</td>
<td>532</td>
</tr>
<tr>
<td>10 Posthumous Article</td>
<td>536</td>
</tr>
<tr>
<td>11 Kronecker’s Reaction</td>
<td>541</td>
</tr>
<tr>
<td>12 Galois’ Legacy</td>
<td>546</td>
</tr>
<tr>
<td>13 Twists of Fate—Poetic Justice</td>
<td>547</td>
</tr>
<tr>
<td>14 The Abel–Galois Linkage</td>
<td>548</td>
</tr>
<tr>
<td>References</td>
<td>550</td>
</tr>
</tbody>
</table>

The Abel Committee 553
The Niels Henrik Abel Board 555
The Abel Lectures 2003–2012 557
The Interviews with the Abel Laureates 563
Addenda, Errata, and Updates 565
 2003 Jean-Pierre Serre 565
 2004 Sir Michael Atiyah and Isadore M. Singer 566
 2005 Peter D. Lax 568
 2006 Lennart Carleson 569
 2007 S.R. Srinivasa Varadhan 570
The Abel Prize 2008-2012
Holden, H.; Piene, R. (Eds.)
2014, XVII, 571 p., Hardcover
ISBN: 978-3-642-39448-5