Contents

Part I Principles of Monte Carlo Methods

1 **Introduction** 3
 1.1 Why Use Probabilistic Models and Simulations? 3
 1.1.1 What Are the Reasons for Probabilistic Models? 4
 1.1.2 What Are the Objectives of Random Simulations? 6
 1.2 Organization of the Monograph 9

2 **Strong Law of Large Numbers and Monte Carlo Methods** 13
 2.1 Strong Law of Large Numbers, Examples of Monte Carlo Methods 13
 2.1.1 Strong Law of Large Numbers, Almost Sure Convergence . 13
 2.1.2 Buffon’s Needle 15
 2.1.3 Neutron Transport Simulations 15
 2.1.4 Stochastic Numerical Methods for Partial Differential
 Equations .. 17
 2.2 Simulation Algorithms for Simple Probability Distributions . . 18
 2.2.1 Uniform Distributions 19
 2.2.2 Discrete Distributions 20
 2.2.3 Gaussian Distributions 21
 2.2.4 Cumulative Distribution Function Inversion, Exponential
 Distributions 22
 2.2.5 Rejection Method 23
 2.3 Discrete-Time Martingales, Proof of the SLLN 25
 2.3.1 Reminders on Conditional Expectation 25
 2.3.2 Martingales and Sub-martingales, Backward Martingales . 27
 2.3.3 Proof of the Strong Law of Large Numbers 30
 2.4 Problems .. 33

3 **Non-asymptotic Error Estimates for Monte Carlo Methods** 37
 3.1 Convergence in Law and Characteristic Functions 37
 3.2 Central Limit Theorem 40
 3.2.1 Asymptotic Confidence Intervals 41
 3.3 Berry–Esseen’s Theorem 42
3.4 Bikelis’ Theorem .. 45
3.4.1 Absolute Confidence Intervals 45
3.5 Concentration Inequalities 47
3.5.1 Logarithmic Sobolev Inequalities 48
3.5.2 Concentration Inequalities, Absolute Confidence Intervals . 50
3.6 Elementary Variance Reduction Techniques 54
3.6.1 Control Variate 54
3.6.2 Importance Sampling 55
3.7 Problems .. 60

Part II Exact and Approximate Simulation of Markov Processes

4 Poisson Processes as Particular Markov Processes 67
4.1 Quick Introduction to Markov Processes 67
4.1.1 Some Issues in Markovian Modeling 67
4.1.2 Rudiments on Processes, Sample Paths, and Laws ... 68
4.2 Poisson Processes: Characterization, Properties 69
4.2.1 Point Processes and Poisson Processes 69
4.2.2 Simple and Strong Markov Property 75
4.2.3 Superposition and Decomposition 77
4.3 Simulation and Approximation 80
4.3.1 Simulation of Inter-arrivals 80
4.3.2 Simulation of Independent Poisson Processes 81
4.3.3 Long Time or Large Intensity Limit, Applications .. 82
4.4 Problems .. 85

5 Discrete-Space Markov Processes 89
5.1 Characterization, Specification, Properties 89
5.1.1 Measures, Functions, and Transition Matrices 89
5.1.2 Simple and Strong Markov Property 91
5.1.3 Semigroup, Infinitesimal Generator, and Evolution Law . 95
5.2 Constructions, Existence, Simulation, Equations 99
5.2.1 Fundamental Constructions 99
5.2.2 Explosion or Existence for a Markov Process 101
5.2.3 Fundamental Simulation, Fictitious Jump Method 103
5.2.4 Kolmogorov Equations, Feynman–Kac Formula 105
5.2.5 Generators and Semigroups in Bounded Operator Algebras 107
5.2.6 A Few Case Studies 112
5.3 Problems .. 115

6 Continuous-Space Markov Processes with Jumps 121
6.1 Preliminaries .. 121
6.1.1 Measures, Functions, and Transition Kernels 121
6.1.2 Markov Property, Finite-Dimensional Marginals 123
6.1.3 Semigroup, Infinitesimal Generator 125
6.2 Markov Processes Evolving Only by Isolated Jumps 126
6.2.1 Semigroup, Infinitesimal Generator, and Evolution Law . 126
6.2.2 Construction, Simulation, Existence 130
6.2.3 Kolmogorov Equations, Feynman–Kac Formula, Bounded Generator Case 133
6.3 Markov Processes Following an Ordinary Differential Equation Between Jumps: PDMP 136
6.3.1 Sample Paths, Evolution, Integro-Differential Generator 136
6.3.2 Construction, Simulation, Existence 141
6.3.3 Kolmogorov Equations, Feynman–Kac Formula 144
6.3.4 Application to Kinetic Equations 146
6.3.5 Further Extensions .. 149
6.4 Problems .. 151

7 Discretization of Stochastic Differential Equations 155
7.1 Reminders on Itô’s Stochastic Calculus 155
7.1.1 Stochastic Integrals and Itô Processes 155
7.1.2 Itô’s Formula, Existence and Uniqueness of Solutions of Stochastic Differential Equations 160
7.1.3 Markov Properties, Martingale Problems and Fokker–Planck Equations ... 162
7.2 Euler and Milstein Schemes ... 165
7.3 Convergence Rates in $L^p(\Omega)$ Norm and Almost Surely 168
7.4 Monte Carlo Methods for Parabolic Partial Differential Equations 176
7.4.1 The Principle of the Method 176
7.4.2 Introduction of the Error Analysis 177
7.5 Optimal Convergence Rate: The Talay–Tubaro Expansion 180
7.6 Romberg–Richardson Extrapolation Methods 185
7.7 Probabilistic Interpretation and Estimates for Parabolic Partial Differential Equations 186
7.8 Problems .. 191

Part III Variance Reduction, Girsanov’s Theorem, and Stochastic Algorithms
8 Variance Reduction and Stochastic Differential Equations 199
8.1 Preliminary Reminders on the Girsanov Theorem 199
8.2 Control Variates Method ... 200
8.3 Variance Reduction for Sensitivity Analysis 202
8.3.1 Differentiable Terminal Conditions 202
8.3.2 Non-differentiable Terminal Conditions 204
8.4 Importance Sampling Method 206
8.5 Statistical Romberg Method 209
8.6 Problems .. 210

9 Stochastic Algorithms .. 213
9.1 Introduction ... 213
9.2 Study in an Idealized Framework 214
Stochastic Simulation and Monte Carlo Methods
Mathematical Foundations of Stochastic Simulation
Graham, C.; Talay, D.
2013, XVI, 260 p., Hardcover
ISBN: 978-3-642-39362-4