Contents

1 **Historical and Technical Overview of SLF/ELF Electromagnetic Wave Propagation** ... 1
 1.1 Medium Characteristics of SLF/ELF Wave Propagation 1
 1.2 The VLF Waveguide Propagation Theory and Its Applications in Submarine Communication ... 2
 1.3 SLF Communication System and SLF/ELF Propagation Theory . 4
 1.4 SLF/ELF Emission as Earthquake Precursor and Field on and near the Ground by Underground SLF/ELF Source 7
 1.5 ELF Wave Propagation Along the Ocean Floor and the Marine Controlled Source Electromagnetics (mCSEM) Method 8
 1.6 VLF/SLF/ELF Field on Sea Surface Excited by Space Borne Transmitter .. 9
 1.7 Atmospheric Noise in SLF/ELF Ranges 11
References ... 12

2 **Excitation and Propagation of SLF/ELF Electromagnetic Waves in the Earth–Ionosphere Waveguide/Cavity** 17
 2.1 Introduction ... 17
 2.2 SLF/ELF Field of VED in the Earth–Ionosphere Waveguide/Cavity .. 18
 2.2.1 Formulations of the Problem ... 18
 2.2.2 Determination of the Excitation Coefficients A_s 25
 2.2.3 Approximated Formulas of SLF Field 26
 2.2.4 New Algorithm for ELF Field .. 28
 2.3 SLF/ELF Field of VMD in the Earth–Ionosphere Waveguide/Cavity .. 33
 2.4 SLF/ELF Field of HED in the Earth–Ionosphere Waveguide/Cavity .. 39
 2.5 Effect of Phase Velocity and Attenuation Rate by Gradual Inhomogeneous Anisotropic Ionosphere in SLF/ELF Ranges 45
2.6 SLF/ELF Fields of Ground-Based Horizontal Transmitting
Antenna .. 53
2.6.1 SLF Field in Far-Field Region 53
2.6.2 SLF Field in the Near-Field Region 56
2.6.3 The Field in ELF Range and the Lower End
of SLF Range .. 58
References ... 62

3 Spherical Harmonic Series Solution for SLF/ELF Field in the
Earth–Ionosphere Waveguide/Cavity 65
3.1 Introduction ... 65
3.2 SLF/ELF Fields of VED in the Earth–Ionosphere
Waveguide/Cavity .. 66
3.2.1 Spherical Harmonic Series Solution for SLF/ELF Field
of VED in the Earth–Ionosphere Cavity 66
3.2.2 Speed-up Numerical Convergence Algorithm 70
3.2.3 Evaluations for $\tilde{J}_n(\nu)$, $\tilde{H}_n(\nu)$, $P_n(\nu)$, and $P^1_n(\nu)$ 79
3.2.4 Computations and Discussions 82
3.3 SLF/ELF Fields of HED in the Earth–Ionosphere
Waveguide/Cavity .. 86
3.3.1 Spherical Harmonic Series Solution for SLF/ELF Fields
of HED in the Earth–Ionosphere Waveguide/Cavity 86
3.3.2 Speed-up Numerical Convergence Algorithm 92
3.3.3 Evaluations for $\tilde{J}_n(\nu)$, $\tilde{H}_n(\nu)$, $P_n(\nu)$, and $P^1_n(\nu)$ 101
3.3.4 Numerical Results and Discussions 101
References ... 103

4 SLF/ELF Field in Air and Ionosphere Generated by Earthquake
Radiation Source .. 105
4.1 Introduction ... 105
4.2 Formulation of Problem 106
4.3 Analytical Formulas of the Field Components 116
4.3.1 Evaluation for the Electric-Type Field 116
4.3.2 Evaluation for the Magnetic-Type Field 121
4.3.3 Final Formulas for SLF/ELF Fields in Air and Ionosphere 124
4.4 Comparison and Analysis for Planar and Spherical Models ... 126
4.5 Computations and Conclusions 130
References ... 133

5 Propagation of SLF/ELF Waves in Anisotropic IOnosphere 135
5.1 Introduction ... 135
5.2 Propagation of SLF/ELF Waves in Homogeneous Anisotropic
Ionosphere .. 136
5.2.1 SLF/ELF Wave Propagation in Homogeneous
Anisotropic Ionosphere 136
5.2.2 Computations and Discussions 145
5.3 Propagation of SLF/ELF Waves in Inhomogeneous Anisotropic Ionosphere 149
5.3.1 SLF/ELF Wave Propagation in Stratified Anisotropic Ionosphere 152
5.3.2 Computations and Discussions .. 157
References .. 160

6 ELF Wave Propagation Along Sea-Rock Boundary and mCSEM Method 161
6.1 Introduction .. 161
6.2 ELF Field of HED on the Boundary Between Sea Water and Ocean Floor 162
 6.2.1 The Integrated Formulas of the Field in Sea Water and Ocean Floor 162
 6.2.2 Computations and Discussions 170
 6.2.3 Poynting Vector and Its Trajectory in Ocean Floor .. 172
6.3 ELF Wave Excited by HED in the Three-Layered Region .. 179
 6.3.1 Analytical Formulas for EM Field in the Three-Layered Region 180
 6.3.2 Computations and Discussions 185
6.4 ELF Wave Propagation Along the Boundary Between Sea Water and One-Dimensionally Anisotropic Rock .. 187
 6.4.1 Formulations of the Problem .. 188
 6.4.2 Approximated Formulas for the Field Components ... 195
 6.4.3 Computations and Discussions 198
 6.4.4 Comparisons with Measurements 198
6.5 The Electromagnetic Field Generated by HED for n-Layered Subbed 201
 6.5.1 The Integrated Formulas for the Electromagnetic Field Generated by HED for n-Layered Subbed 201
 6.5.2 Speeding Numerical Convergence Algorithm ... 204
 6.5.3 Computations and Discussions on the Normalized Surface Impedance 207
6.6 The mCSEM Method and Its Applications ... 208
 6.6.1 The Electric Field Relative Anomaly Versus the Target’s Depth 210
 6.6.2 The Relative Anomaly of Electric Field Versus Target Thickness, Conductivity, and Operating Frequency 212
 6.6.3 The Effect of Air Waves 214
6.7 Summary ... 219
References .. 219

7 Radiation and Propagation of SLF/ELF Electromagnetic Waves of Space Borne Transmitter 223
7.1 Introduction ... 223
7.2 Radiation of an SLF/ELF Electric Dipole in an Infinite Homogeneous Anisotropic Plasma .. 224
7.2.1 Radiation of a SLF/ELF Electric Dipole in an Infinite Homogeneous Anisotropic Plasma .. 224
7.2.2 The Approximation of the Far Field 230
7.2.3 Analyses, Discussions, and Computations 232
7.3 Electromagnetic Field on Sea Surface Generated by Space Borne SLF Transmitter .. 237
7.3.1 The Representations of the Field Components in the Ionosphere .. 238
7.3.2 The Representations of the Field Components in the Air 242
7.4 The Quasi-Longitudinal Approximation 243
7.4.1 SLF Field on the Sea Surface ... 245
7.4.2 SLF Field on the Sea Surface for Several Special Cases 247
7.5 Computations and Discussions .. 248
References .. 250

8 Atmospheric Noises in SLF/ELF Ranges 253
8.1 Introduction .. 253
8.2 The Distribution of SLF/ELF Noise Sources and Its Statistical Properties .. 254
8.3 Atmospheric Noise Data in HF and VLF Ranges 255
8.4 Speculation of Global Atmospheric Noise Distributions in SLF/ELF Ranges .. 257
8.5 Statistical Distributions of Atmospheric Noise in SLF/ELF Ranges .. 260
References .. 261

Index .. 263
Propagation of SLF/ELF Electromagnetic Waves
Pan, W.-Y.; Li, K.
2014, X, 265 p. 132 illus., Hardcover
ISBN: 978-3-642-39049-4