Contents

1 Galois Theory .. 1
 1.1 Action of a Solvable Group and Representability by Radicals 2
 1.1.1 A Sufficient Condition for Solvability by Radicals 3
 1.1.2 The Permutation Group of the Variables and Equations
 of Degree 2 to 4 5
 1.1.3 Lagrange Polynomials and Commutative Matrix Groups . 5
 1.1.4 Solving Equations of Degree 2 to 4 by Radicals 8
 1.2 Fixed Points under an Action of a Finite Group and Its Subgroups 11
 1.3 Field Automorphisms and Relations Between Elements in a Field 14
 1.3.1 Separable Equations 14
 1.3.2 Algebraicity over the Invariant Subfield 15
 1.3.3 Subalgebra Containing the Coefficients of the Lagrange
 Polynomial .. 16
 1.3.4 Representability of One Element Through Another
 Element over the Invariant Field 17
 1.4 Action of a k-Solvable Group and Representability by k-Radicals 18
 1.5 Galois Equations 19
 1.6 Automorphisms Connected with a Galois Equation 21
 1.7 The Fundamental Theorem of Galois Theory 22
 1.7.1 Galois Extensions 22
 1.7.2 Galois Groups 23
 1.7.3 The Fundamental Theorem 24
 1.7.4 Properties of the Galois Correspondence 24
 1.7.5 Change of the Coefficient Field 25
 1.8 A Criterion for Solvability of Equations by Radicals 27
 1.8.1 Roots of Unity 27
 1.8.2 The Equation $x^n = a$ 28
 1.8.3 Solvability by Radicals 29
 1.9 A Criterion for Solvability of Equations by k-Radicals 30
 1.9.1 Properties of k-Solvable Groups 30
1.9.2 Solvability by k-Radicals 32
1.9.3 Unsolvability of a Generic Degree-$(k + 1 > 4)$ Equation in k-Radicals ... 33
1.10 Unsolvability of Complicated Equations by Solving Simpler Equations ... 35
 1.10.1 A Necessary Condition for Solvability 35
 1.10.2 Classes of Finite Groups 36
1.11 Finite Fields ... 37

2 Coverings ... 41
2.1 Coverings over Topological Spaces 42
 2.1.1 Coverings and Covering Homotopy 42
 2.1.2 Classification of Coverings with Marked Points 43
 2.1.3 Coverings with Marked Points and Subgroups of the Fundamental Group .. 45
 2.1.4 Coverings and Galois Theory 48
2.2 Completion of Finite Coverings over Punctured Riemann Surfaces ... 52
 2.2.1 Filling Holes and Puiseux Expansions 52
 2.2.2 Analytic-Type Maps and the Real Operation of Filling Holes .. 54
 2.2.3 Finite Ramified Coverings with a Fixed Ramification Set ... 57
 2.2.4 Riemann Surface of an Algebraic Equation over the Field of Meromorphic Functions 62

3 Ramified Coverings and Galois Theory 65
3.1 Finite Ramified Coverings and Algebraic Extensions of Fields of Meromorphic Functions 66
 3.1.1 The Field $P_a(O)$ of Germs at the Point $a \in X$ of Algebraic Functions with Ramification over O 66
 3.1.2 Galois Theory for the Action of the Fundamental Group on the Field $P_a(O)$ 68
 3.1.3 Field of Functions on a Ramified Covering 71
3.2 Geometry of Galois Theory for Extensions of a Field of Meromorphic Functions ... 72
 3.2.1 Galois Extensions of the Field $K(X)$ 72
 3.2.2 Algebraic Extensions of the Field of Germs of Meromorphic Functions .. 73
 3.2.3 Algebraic Extensions of the Field of Rational Functions ... 74

References .. 79

Index .. 81
Galois Theory, Coverings, and Riemann Surfaces
Khovanskii, A.
2013, VIII, 81 p., Hardcover
ISBN: 978-3-642-38840-8