Contents

1 Basic Principles of the Interaction of X-Rays with Matter:
Quantum Electrodynamical Analysis ... 1
1.1 Equations of X-Ray Optics .. 1
1.2 Average Current Density and X-Ray Polarizability 10
1.3 Scattering Factors .. 18
1.4 Numerical Calculation of Debye–Waller Factor 34
References ... 50

2 The Theory of X-Ray Scattering from Macroscopical Objects 53
2.1 The Stationary and Temporal Approaches to X-Ray
Scattering Process ... 53
2.2 Approximate Methods for the Solution of Stationary
Scattering Problem .. 63
References ... 69

3 X-Ray Reflectivity ... 71
3.1 Experiment Geometry and Basic Parameters of XRR 71
3.2 Reflection of X-Ray Radiation from Rough Surface 81
3.3 X-Ray Reflectivity from Multilayered Structures 101
3.4 Characterization of Samples Using Experimental XRR Data 113
References ... 117

4 X-Ray Diffraction in Ideal Crystals .. 119
4.1 Kinematical X-Ray Diffraction Theory 120
4.2 Basics of Two-Wave Dynamical Diffraction 125
4.2.1 Amplitude Ratio ... 134
4.2.2 Anomalous Absorption and Extinction 137
4.2.3 Group Velocity ... 140
4.3 Dynamical Diffraction in Multilayers and Superlattices 141
4.4 Grazing Incidence and Extremely Asymmetric Diffraction 154
4.5 X-Ray Diffraction from Lateral Nanostructures 160
References ... 167
5 Diffuse X-Ray Scattering from Imperfect Surfaces and Interfaces .. 171
 5.1 Statistical Approach for X-Ray Scattering from Imperfect Structures .. 172
 5.2 Diffuse Scattering from Roughness in XRR Geometry .. 179
 5.3 X-Ray Diffuse Scattering from Rough Interfaces in Multilayered Structures 195
 5.4 Grazing-Incidence Small Angle X-Ray Scattering ... 203
References ... 215

6 X-Ray Diffraction from Crystals with Defects ... 217
 6.1 X-Ray Polarizability of Crystal with Defects ... 218
 6.2 Dynamical X-Ray Diffraction in a Crystal with Defects .. 223
 6.3 Effective Potential and Applicability of Kinematical Theory ... 231
 6.4 One-Dimensional Defects (Dislocations) ... 236
 6.4.1 Parallel Edge Dislocations at Interfaces ... 237
 6.4.2 Parallel Edge Dislocations in Graded Layers ... 245
 6.4.3 Parallel Dislocations Lines Perpendicular to Sample Surface 251
 6.5 Two-Dimensional Defects (Stacking Faults) .. 256
References ... 260

7 X-Ray Diffraction Residual Stress Analysis in Polycrystals .. 265
 7.1 X-Ray Stress Measurements ... 266
 7.2 Grain-Interaction Models .. 272
 7.2.1 Voigt Model ... 274
 7.2.2 Reuss Model ... 275
 7.2.3 Hashin–Shtrikman Boundaries for Rigidity Modulus ... 276
 7.2.4 Self-Consistent Model of Eshelby-Kröner ... 282
 7.2.5 Grain Interaction in Thin Film. Vook-Witt and Inverse Vook-Witt Models 285
 7.3 Residual Stress Analysis as a Particular Case of Powder Diffractometry 288
 7.4 Residual Stress in Macroscopically Isotropic Materials. X-Ray Elastic Constants 294
 7.4.1 Voigt Model ... 299
 7.4.2 Reuss Model ... 300
 7.4.3 Eshelby-Kröner Model .. 300
 7.5 Residual Stress in Macroscopically Anisotropic Materials. X-Ray Stress Factors 303
 7.5.1 Voigt Model ... 303
 7.5.2 Reuss Model ... 304
7.5.3 Eshelby-Kröner Model ... 306
7.5.4 Vook-Witt and Inverse Vook-Witt Models 307
References ... 309

Index ... 313
Theoretical Concepts of X-Ray Nanoscale Analysis
Theory and Applications
Benediktovitch, A.; Feranchuk, I.; Ulyanenkov, A.
2014, XIII, 318 p. 108 illus., 37 illus. in color., Hardcover
ISBN: 978-3-642-38176-8