Inhaltsverzeichnis

Teil I Grundlagen der Maß- und Integrationstheorie

1 Einführendes Beispiel: Der unendliche Münzwurf 3
 1.1 Übungen .. 11

2 Grundlagen der Maßtheorie 13
 2.1 Mengensysteme 13
 2.2 Mengenfunktionen 19
 2.3 Fortsetzung eines Maßes 28
 2.4 Eindeutigkeit und Dynkin-Systeme 33
 2.5 Vollständigkeit .. 40
 2.6 Das Lebesgue-Maß 43
 2.7 Übungen .. 45

3 Messbare Abbildungen, Zufallsvariable 49
 3.1 Messbare Abbildungen 49
 3.2 Bildmaße und Zufallsvariable 58
 3.3 Konvergenzarten 59
 3.4 Übungen .. 61

4 Integration, Erwartungswert 65
 4.1 Definition des Integrals 66
 4.2 Vertauschung von Limes und Integral 79
 4.3 Integration bzgl. Bildmaßen und Maßen mit Dichten 83
 4.4 \(L^p \)-Räume ... 87
 4.5 Riemann- und Lebesgue-Integral 94
 4.6 Übungen .. 96
Teil II Unabhängigkeit und Grenzwertsätze der Wahrscheinlichkeitstheorie

5 Unabhängigkeit ... 101
 5.1 Bedingte Wahrscheinlichkeiten ... 101
 5.2 Definition und Eigenschaften der Unabhängigkeit 103
 5.3 Produktmaße und der Satz von Fubini 108
 5.4 Terminale Ereignisse ... 119
 5.5 Übungen ... 122

6 Das starke Gesetz der großen Zahlen 127
 6.1 Übungen ... 136

7 Schwache Konvergenz ... 139
 7.1 Definition und Grundlagen .. 139
 7.2 Relative Kompaktheit .. 150
 7.3 Übungen ... 155

8 Charakteristische Funktionen ... 157
 8.1 Definition und Grundlagen .. 157
 8.2 Eindeutigkeit und Umkehrformeln 163
 8.3 Der Konvergenzsatz ... 167
 8.4 Übungen ... 173

9 Der zentrale Grenzwertsatz ... 175
 9.1 Der eindimensionale Fall ... 175
 9.2 Der mehrdimensionale Fall ... 177
 9.3 Übungen ... 180

Teil III Abhängigkeit und stochastische Prozesse

10 Markov-Ketten ... 183
 10.1 Definition und Beispiele .. 184
 10.2 Rekurrenz und Transienz ... 191
 10.3 Grenzverhalten irreduzibler Markov-Ketten 197
 10.4 Übungen ... 206

11 Stochastische Prozesse: Grundlagen 209
 11.1 Beispiele ... 209
 11.2 Grundbegriffe .. 223
 11.3 Konstruktion von stochastischen Prozessen 225
 11.4 Prozesse mit stetigen Pfaden 238
 11.5 Übungen ... 243
12 Die Radon-Nikodym Ableitung .. 245
 12.1 Einführende Beispiele .. 246
 12.2 Signierte Maße ... 248
 12.3 Der Satz von Radon-Nikodym 253
 12.4 Singulare signierte Maße 264
 12.5 Übungen .. 267

13 Bedingte Wahrscheinlichkeit und Erwartung 271
 13.1 Bedingte Wahrscheinlichkeit bzgl. einer σ-Algebra 271
 13.2 Bedingte Erwartung bzgl. einer σ-Algebra 278
 13.3 Reguläre bedingte Verteilungen 287
 13.4 Übungen .. 289

14 Martingale .. 291
 14.1 Martingale mit diskreter Zeit: Grundlagen 291
 14.2 Optional Sampling ... 298
 14.3 Konvergenzsätze .. 306
 14.4 Martingale mit allgemeiner Zeitmenge 316
 14.5 Die quadratische Variation der Brown'schen Bewegung 325
 14.6 Übungen .. 327

15 Messbare Prozesse .. 331

16 Markov-Prozesse .. 339
 16.1 Grundlagen ... 339
 16.2 Markov-Prozesse und Halbgruppen 340
 16.3 Feller'sche Halbgruppen und Prozesse 352
 16.4 Lévy-Prozesse .. 361
 16.5 Übungen .. 363

Teil IV Grundlagen der stochastischen Analysis

17 Semimartingale und ihr stochastisches Integral 367
 17.1 Das stochastische Integral von Prozessen von endlicher Variation ... 368
 17.2 Vorbereitung des allgemeinen stochastischen Integrals 369
 17.3 Lokale Martingale ... 374
 17.4 Definition und Eigenschaften von Semimartingalen 377
 17.5 Beispiele ... 380
 17.6 Definition des stochastischen Integrals 382
 17.7 Eigenschaften des stochastischen Integrals 387
 17.8 Übungen .. 393
18 Die quadratische Variation und Kovariation 395
 18.1 Existenz und Eigenschaften der quadratische Variation und Kovariation 395
 18.2 Die Itô-Döblin-Formel ... 401
 18.3 Der Satz von Girsanov ... 405
 18.4 Anwendung auf die mathematische Theorie der Finanzmärkte 410
 18.5 Übungen .. 414

Lösungen einiger Übungsaufgaben ... 415

Literatur ... 423

Sachverzeichnis .. 425
Wahrscheinlichkeitstheorie und Stochastische Prozesse
Mürmann, M.
2014, XII, 428 S., Softcover
ISBN: 978-3-642-38159-1