Contents

1 **Introduction** .. 1
References ... 6

2 **Theoretical Background** 7
2.1 Three-Step Model ... 8
2.2 Valence-Band Photoexcitation Process for Non-interacting
 Systems ... 12
2.3 Valence-Band Photoexcitation Process for Strongly
Correlated Electron Systems 16
2.4 Core-Level Photoemission Process for Strongly
Correlated Electron Systems 18
2.5 Matrix Element Effects ... 20
2.6 Theoretical Models to Describe the Spectra of Strongly
Correlated Electron Systems 21
2.6.1 Single Impurity Anderson Model 24
2.6.2 Cluster Model .. 26
2.6.3 Hubbard Model .. 27
2.6.4 Dynamical Mean Field Theory 28
2.6.5 New Directions and Some Remarks 29
References ... 29

3 **Instrumentation and Methodology** 33
3.1 Synchrotron Radiation and Undulator Radiation 33
3.2 Principle of Grating and Crystal Monochromators 37
3.2.1 Grating Monochromators 38
3.2.2 Crystal Monochromators 42
3.2.3 Focusing Mirrors ... 45
3.3 Examples of Light Sources 45
3.3.1 High Resolution Vacuum Ultraviolet Synchrotron
Radiation Beam Lines ... 45
3.3.2 High Resolution Soft X-ray Beam Lines 49
3.3.3 High Resolution Hard X-ray Beam Lines 52
3.3.4 Laboratory Vacuum Ultraviolet Sources 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5</td>
<td>Laser Sources</td>
<td>56</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Miscellaneous Subjects</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Electron Spectrometers</td>
<td>61</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Hemispherical Analyzers</td>
<td>62</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Cylindrical Mirror Analyzers</td>
<td>64</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Two-Dimensional Analyzers</td>
<td>65</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Time of Flight Analyzers</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>Sample Preparation and Characterization</td>
<td>69</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Ion Sputtering, Scraping, Fracturing and Cleavage</td>
<td>69</td>
</tr>
<tr>
<td>3.5.2</td>
<td>In Situ Sample Growth and Surface Analysis</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Samples at Low Temperatures or at Ambient Pressure</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Methodology</td>
<td>75</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Angle Integrated Photoelectron Spectroscopy</td>
<td>75</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Resonance Photoemission and Constant Initial State Spectrum</td>
<td>76</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Angle Resolved Photoelectron Spectroscopy</td>
<td>79</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Photoelectron Spectroscopy in the μm and nm Regions</td>
<td>81</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Momentum Microscope</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Bulk and Surface Sensitivity of Photoelectron Spectroscopy</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Concept of Inelastic Mean Free Path</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>How to Separate the Bulk and Surface Contributions in the Spectra</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>Examples of Angle Integrated Photoelectron Spectroscopy</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Valence Band Spectra</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>Core Level Spectra</td>
<td>107</td>
</tr>
<tr>
<td>5.3</td>
<td>Multiplet Structures</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>Angle Resolved Photoelectron Spectroscopy in the hv Region of ~15 to 200 eV</td>
<td>117</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>117</td>
</tr>
<tr>
<td>6.2</td>
<td>Layered Materials</td>
<td>120</td>
</tr>
<tr>
<td>6.3</td>
<td>Rare Earth Compounds</td>
<td>126</td>
</tr>
<tr>
<td>6.4</td>
<td>One Dimensional Materials</td>
<td>131</td>
</tr>
<tr>
<td>6.5</td>
<td>Topological Insulators</td>
<td>134</td>
</tr>
<tr>
<td>6.6</td>
<td>Superconductors</td>
<td>139</td>
</tr>
<tr>
<td>6.7</td>
<td>Quantum Well States</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>151</td>
</tr>
</tbody>
</table>
7 High Resolution Soft X-ray Angle-Integrated and -Resolved Photoelectron Spectroscopy of Correlated Electron Systems

7.1 Angle-Integrated Soft X-ray Photoelectron Spectroscopy

7.1.1 Ce Compounds

7.1.2 Yb Compounds

7.1.3 Transition Metal Compounds

7.2 Angle Resolved Soft X-ray Photoelectron Spectroscopy

7.2.1 Ce Compounds

7.2.2 La_{2-x}Sr_{x}CuO_{4} and Nd_{2-x}Ce_{x}CuO_{4}

7.2.3 Layered Ruthenates Sr_{2-x}Ca_{x}RuO_{4}

7.2.4 V_{6}O_{13} and SrCuO_{2}

7.2.5 Other Materials (VSe_{2}, LaRu_{2}P_{2}, BiTeI)

7.3 Standing Wave

References

8 Hard X-ray Photoelectron Spectroscopy

8.1 La_{1-x}Sr_{x}MnO_{3}, La_{2-x}Sr_{x}CuO_{4} and Nd_{2-x}Ce_{x}CuO_{4}

8.2 Sm Compounds

8.3 Pr Compounds

8.4 Yb Compounds

8.5 V Oxides

8.6 Recoil Effects

8.7 Angle Resolved Hard X-ray Photoelectron Spectroscopy

8.8 Polarization Dependence of Hard X-ray Photoelectron Spectroscopy

References

9 Very Low Photon Energy Photoelectron Spectroscopy

9.1 Angle Integrated and Resolved ELEPES by Laser Excitation

9.1.1 Angle-Integrated Measurements

9.1.2 Angle-Resolved Measurements

9.2 ELEPES by Synchrotron Radiation

9.3 ELEPES by Microwave Excited Rare Gas Lamp

9.4 Two Photon Excitation Photoelectron Spectroscopy

References

10 Inverse Photoemission

10.1 General Concept

10.2 Isochromat IPES

10.3 Angle-Resolved IPES

10.4 IPES with a Fixed Incident Electron Energy

10.5 IPES of Quantum Well States

References
11 Magnetic Dichroism and Spin Polarization in Photoelectron Spectroscopy .. 295
 11.1 Magnetic Circular and Linear Dichroism in Photoelectron Spectroscopy 295
 11.2 Principle and Instrumentation for Spin Polarized Photoelectron Spectroscopy 300
 11.3 Spin Polarized Photoelectron Spectroscopy for Non-Magnetic Materials 307
 11.3.1 Pt .. 307
 11.3.2 High-Tc Cuprate 309
 11.3.3 Rashba Effect and Topological Insulators .. 311
 11.4 Spin Polarized Photoelectron Spectroscopy of Magnetic Materials 318
 11.5 Spin Polarized Inverse Photoemission Spectroscopy (SP-IPES) ... 321
 11.5.1 Principle and Instrumentation ... 321
 11.5.2 Several SP-IPES Studies ... 324
References .. 327

12 Photoelectron Diffraction and Photoelectron Holography ... 331
References ... 337

13 Complementary Techniques for Studying Bulk Electronic States .. 339
 13.1 Core Absorption and Core Fluorescence Spectroscopy ... 339
 13.2 Infrared and Far-Infrared Spectroscopy ... 345
 13.3 Resonance Inelastic X-ray Scattering .. 349
References .. 355

14 Surface Spectroscopy by Scanning Tunneling Microscope ... 359
References .. 365

15 Outlook .. 367

List of Samples .. 369

Index ... 371
Photoelectron Spectroscopy
Bulk and Surface Electronic Structures
Suga, S.; Sekiyama, A.
2014, XVIII, 378 p. 192 illus., 70 illus. in color.,
Hardcover
ISBN: 978-3-642-37529-3