Contents

1 Introduction .. 1
 References ... 6

2 Theoretical Background .. 7
 2.1 Three-Step Model ... 8
 2.2 Valence-Band Photoexcitation Process for Non-interacting Systems 12
 2.3 Valence-Band Photoexcitation Process for Strongly Correlated Electron Systems 16
 2.4 Core-Level Photoemission Process for Strongly Correlated Electron Systems 18
 2.5 Matrix Element Effects 20
 2.6 Theoretical Models to Describe the Spectra of Strongly Correlated Electron Systems 21
 2.6.1 Single Impurity Anderson Model 24
 2.6.2 Cluster Model .. 26
 2.6.3 Hubbard Model 27
 2.6.4 Dynamical Mean Field Theory 28
 2.6.5 New Directions and Some Remarks 29
 References .. 29

3 Instrumentation and Methodology 33
 3.1 Synchrotron Radiation and Undulator Radiation 33
 3.2 Principle of Grating and Crystal Monochromators 37
 3.2.1 Grating Monochromators 38
 3.2.2 Crystal Monochromators 42
 3.2.3 Focusing Mirrors 45
 3.3 Examples of Light Sources 45
 3.3.1 High Resolution Vacuum Ultraviolet Synchrotron Radiation Beam Lines 45
 3.3.2 High Resolution Soft X-ray Beam Lines 49
 3.3.3 High Resolution Hard X-ray Beam Lines 52
 3.3.4 Laboratory Vacuum Ultraviolet Sources 54
3.3.5 Laser Sources ... 56
3.3.6 Miscellaneous Subjects 60
3.4 Electron Spectrometers 61
 3.4.1 Hemispherical Analyzers 62
 3.4.2 Cylindrical Mirror Analyzers 64
 3.4.3 Two-Dimensional Analyzers 65
 3.4.4 Time of Flight Analyzers 68
3.5 Sample Preparation and Characterization 69
 3.5.1 Ion Sputtering, Scraping, Fracturing and Cleavage .. 69
 3.5.2 In Situ Sample Growth and Surface Analysis 72
 3.5.3 Samples at Low Temperatures
 or at Ambient Pressure 73
3.6 Methodology .. 75
 3.6.1 Angle Integrated Photoelectron Spectroscopy 75
 3.6.2 Resonance Photoemission and Constant Initial
 State Spectrum 76
 3.6.3 Angle Resolved Photoelectron Spectroscopy 79
 3.6.4 Photoelectron Spectroscopy in the μm
 and nm Regions 81
 3.6.5 Momentum Microscope 86
References ... 86

4 Bulk and Surface Sensitivity of Photoelectron Spectroscopy 91
 4.1 Concept of Inelastic Mean Free Path 91
 4.2 How to Separate the Bulk and Surface Contributions
 in the Spectra 95
References ... 98

5 Examples of Angle Integrated Photoelectron Spectroscopy 99
 5.1 Valence Band Spectra 99
 5.2 Core Level Spectra 107
 5.3 Multiplet Structures 112
References ... 114

6 Angle Resolved Photoelectron Spectroscopy in the hv Region
 of \sim15 to 200 eV .. 117
 6.1 General ... 117
 6.2 Layered Materials 120
 6.3 Rare Earth Compounds 126
 6.4 One Dimensional Materials 131
 6.5 Topological Insulators 134
 6.6 Superconductors 139
 6.7 Quantum Well States 149
References ... 151
7 High Resolution Soft X-ray Angle-Integrated and -Resolved Photoelectron Spectroscopy of Correlated Electron Systems

7.1 Angle-Integrated Soft X-ray Photoelectron Spectroscopy

7.1.1 Ce Compounds

7.1.2 Yb Compounds

7.1.3 Transition Metal Compounds

7.2 Angle Resolved Soft X-ray Photoelectron Spectroscopy

7.2.1 Ce Compounds

7.2.2 La_{2-x}Sr_xCuO_4 and Nd_{2-x}Ce_xCuO_4

7.2.3 Layered Ruthenates Sr_{2-x}Ca_xRuO_4

7.2.4 V_6O_{13} and SrCuO_2

7.2.5 Other Materials (VSe_2, LaRu_2P_2, BiTeI)

7.3 Standing Wave

References

8 Hard X-ray Photoelectron Spectroscopy

8.1 La_{1-x}Sr_xMnO_3, La_{2-x}Sr_xCuO_4 and Nd_{2-x}Ce_xCuO_4

8.2 Sm Compounds

8.3 Pr Compounds

8.4 Yb Compounds

8.5 V Oxides

8.6 Recoil Effects

8.7 Angle Resolved Hard X-ray Photoelectron Spectroscopy

8.8 Polarization Dependence of Hard X-ray Photoelectron Spectroscopy

References

9 Very Low Photon Energy Photoelectron Spectroscopy

9.1 Angle Integrated and Resolved ELEPES by Laser Excitation

9.1.1 Angle-Integrated Measurements

9.1.2 Angle-Resolved Measurements

9.2 ELEPES by Synchrotron Radiation

9.3 ELEPES by Microwave Excited Rare Gas Lamp

9.4 Two Photon Excitation Photoelectron Spectroscopy

References

10 Inverse Photoemission

10.1 General Concept

10.2 Isochromat IPES

10.3 Angle-Resolved IPES

10.4 IPES with a Fixed Incident Electron Energy

10.5 IPES of Quantum Well States

References
Photoelectron Spectroscopy
Bulk and Surface Electronic Structures
Suga, S.; Sekiyama, A.
2014, XVIII, 378 p. 192 illus., 70 illus. in color., Hardcover
ISBN: 978-3-642-37529-3