Contents

1 Waves in a Viscous Solid with Cavities

1.1 Introduction ... 1
1.2 Statement of the Problem and the Basic Equations 1
1.3 Derivation of the Evolution Equation 2
1.4 The Soliton Solution of the Evolution Equation
of the Fifth Order ... 4
1.5 Derivation of the Modulation Equation for Diffraction
and One-Dimensional Problems in the Case
of Quasimonochromatic Waves 6
1.6 Problem Statement about Wave Fields in the Case
of a Layer ... 8
1.7 A Diffraction Problem for Narrow Beams 10
1.8 Boundary Conditions ... 11
1.9 The Equation of Dimensionless Width of a Beam
for Nonparaxial Rays ... 13
1.10 The Solution of the Equation for Dimensionless
Width of a Beam for Paraxial Rays 14
1.11 The Analysis of Solutions for Narrow Beams 14
1.12 Transition to an One-Dimensional Case. The Analysis
of Dispersion Properties of Plane Waves 15
1.13 Derivation of Evolution Equations by the Method
of Bound Normal Waves 17
1.14 Phase-Group Synchronism of Low-Frequency
and High-Frequency Waves 20
1.15 Nonlinear Stationary Waves 25

2 Waves in Viscous, Dispersive, Nonlinear, Preliminary
Deformable Layer with a Free Surface

2.1 Introduction ... 29
2.2 The General Basic Equations 29
2.3 Equilibrium Waves .. 31
2.4 Derivation of Evolution Equations 33
2.5 The Equation of Modulation and Its Solution
for Narrow Bunches .. 34
2.6 Bistability ... 38
2.7 The “Frozen” Waves ... 39

3 Waves in Solids with Porosity Filled by an Electrically
Non-conducting Liquid (Biot Medium) 41
3.1 Introduction ... 41
3.2 The Reference Review .. 42
3.3 Derivation of Nonlinear Equations from the Variational
Principle .. 44
3.4 Nonlinear One-Dimensional Waves 47
3.5 The Evolution Equation for a Two-Phase Medium 50
3.6 The Nonlinear Equation of Modulation and the Dispersion
Equation with Account of Nonlinearities 52
3.7 Solution of the Evolution and Modulation Equations 53
3.8 Nonlinear Waves in a Porous Liquid-Filled Medium
with Cavities .. 55
3.9 The Equations of Deformation of the Two-Phase Biot
Medium, with Account of the Temperature of both Phases . 59
3.10 The Linear Dispersion Equation with Account
of Temperature Effects and Its Solution 64

4 Waves in a Solid with Porosity Filled by Electrically
Conducting Liquid Located in a Constant Electric Field 67
4.1 Introduction ... 67
4.2 Basic Equations .. 68
4.3 One-Dimensional Case ... 71
4.4 The Linear Dispersion Equation and Its Solution 72
4.5 Evolution Equation .. 73
4.6 Derivation of the Schrödinger Equation and the Dispersion
Nonlinear Equation ... 76
4.7 Solutions of the Evolution and Schrödinger Equations 76

5 Piezoelastic Waves .. 79
5.1 Introduction ... 79
5.2 The Initial Equations of Deformation of a Piezoelectric
Medium .. 80
5.3 The Equations of Deformation of Piezodielectrics
with Ball Heterogeneities 81
5.4 Derivation of the Modulation Equation From the Initial
Equations for Piezoelectric with Ball Heterogeneities 84
5.5 The Linear Dispersion Equation and Its Analysis 87
5.6 The Stability Conditions of a Modulated Nonlinear Electroelastic Wave 88
5.7 Focusing of Gaussian Bunches ... 91
5.8 The Evolution Equation and Its Analysis 95
5.9 Generalization of the Evolution Equation onto a Rhombic Crystal Lattice and Continuously Inhomogeneous Medium ... 99
5.10 The Modulation Equation and Its Analysis for a Piezoelectric Composite 100
5.11 Nonlinear Waves in a Piezo-Semiconductor Medium 106

6 Magnetoelastic Waves .. 113
6.1 Introduction ... 113
6.2 The Modulation Stability of Nonlinear Magnetoelastic Waves .. 114
6.3 Dispersion and Attenuation of Magnetoelastic Waves ... 124
6.4 Magnetoelastic Waves in a Microstructured Medium 129
6.5 The Generalized Nonlinear Equations for a Magnetohydrodynamic Medium 139

7 Waves in Solid Two-Component Shear Mixtures 143
7.1 Brief Review of Papers on Mechanics of Mixtures 143
7.2 The Basic Hypothesis and the Mathematical Model 145
7.3 The Dispersion Properties .. 149
7.4 Deriving of the Evolution Equations by the Method of Bound Normal Waves 150
7.5 Phase-Group Synchronism of Low-Frequency and High-Frequency Waves 152
7.6 Nonlinear Stationary Waves .. 157

8 Waves in the Mixture of Gas and Droplets 163
8.1 Introduction ... 163
8.2 Literature Overview .. 163
8.3 Equations Which Describes Acoustic Waves in the Atmosphere with Account of Droplets Coagulation, Condensation of Water Vapors and Gas Viscosity .. 165
8.4 Dispersion Equation and Its Studying 168
8.5 The Influence of the Acoustic Wave on Size and Concentration of Droplets 172
8.6 The General Equations of the Theory of Electroacoustic Waves in a Cloudy Atmosphere 175
8.7 Linearized System and Dispersion Equation 180
9 Nonlinear Quasimonochromatic Acoustic, Elastic and Electromagnetic Waves in a Media with Microstructure 183
9.1 Introduction .. 183
9.2 The Equations of Motion for Viscous Thermoelastic Composite with Ball Inhomogeneities 185
9.3 The Nonlinear Modulation Equation for Viscous Thermoelastic Composite with Homogeneous Matrix 186
9.4 Stability and Focusing Visco Thermoelastic Waves in a Medium with Ball Inhomogeneities in the Stationary Case .. 188
9.5 Stability and Focusing of Unsteady Modulation Wave ... 190
9.6 Modulation Equation for Viscous Thermoelastic Continuously Inhomogeneous Medium 192
9.7 The Basic Equations of the Acoustic Wave in Media with Relaxation ... 193
9.8 A Detailed Derivation of Splitting of Evolution Equations for the Two Waves 194
9.9 The Basic Equations of Motion of an Inhomogeneous Micropolar Conductive Liquid with Gas Bubbles 196
9.10 Derivation of Stability Conditions from Variational Principles ... 198
9.11 Self-Action of Electromagnetic Waves in a Two-Level Medium, Taking into Account Nonlinear Dissipation 201
9.11.1 The Initial Equations of the Laser Beam in a Two-Level Medium ... 201
9.11.2 Nonlinear Schrödinger Equation 202
9.11.3 The Equations for Waves Propagating in Opposite Directions (the Problem of the Resonator) 205
9.11.4 The Behavior of the Axial Beams 206
9.11.5 Nonaxial Beams .. 208
9.11.6 Stability Conditions .. 209

10 Stability of Soliton-Like Waves and Some Solutions of Dissipative Evolution Equations Without Dispersion 211
10.1 Introduction .. 211
10.2 Influence of Dissipation, Dispersion and Diffraction on the Amplitude and Transverse Stability of Solitons 212
10.3 The Longitudinal Stability of a Soliton-Like Solution of Eq. (10.1) ... 219
11 Waves in the Cosserat Medium 223
11.1 The Cosserat Brothers and Mechanics
of Generalized Continua. 223
11.2 The Basic Relations of the Theory of Micropolar
Elasticity ... 227
11.3 Dispersion Properties of Spatial Waves 232
11.4 Wave Reflection from the Free Surface
of a Micropolar Half-Space 234
11.5 The Surface Rayleigh Waves 236
11.6 Normal Waves in a Layer of Micropolar Material 237
11.7 Macromechanical Modeling of the Elastic
and Viscoelastic Cosserat Media 242
11.8 The Thermoelasticity Problem and Some Nonlinear
Generalizations 248
11.9 The Nonlinear Stationary Wave of Rotational Type internacional 251
11.10 Generation of Strain Solitons in the Cosserat Continuum
with Constrained Rotation [117] 254

References ... 263
Wave Dynamics of Generalized Continua
Bagdoev, A.G.; Erofeev, V.I.; Shekoyan, A.V.
2016, XIII, 274 p., Hardcover
ISBN: 978-3-642-37266-7