Contents

1 Natural Pozzolans .. 1
 Introduction ... 1
 Natural Pozzolan Classification 2
 Production .. 2
 Pyroclastic Rocks 2
 Physical, Chemical, and Mineralogical Properties 4
 Physical Properties 4
 Chemical and Mineralogical Properties 5
 Pozzolanic Activity of Natural Pozzolans 8
 Evaluation of Pozzolanic Activity 9
 Factors Affecting Pozzolanic Activity 10
 Reactivity of Thermally Treated Pozzolans 10
 Hydration Reactions and Hydration Products 11
 Hydration of Natural Pozzolans with Lime 12
 Hydration of Natural Pozzolan with Clinker 13
 Hydration of Pozzolan-Cement Mixture 13
 Effects of Natural Pozzolans on the Properties
of Fresh Concrete 15
 Effects of Natural Pozzolans on the Mechanical Properties of Hardened Concrete 16
 Strength of Mortars and Concretes 16
 Modulus of Elasticity 20
 Effect on Volume Changes of Concrete 21
 Microstructure, Porosity and Permeability 23
 Effect of Natural Pozzolans on Durability of Concrete 27
 Effect of Natural Pozzolan on Carbonation of Mortars and Concretes 28
 Effect of Chloride Ions on Durability of Pozzolanic Cement Mortars and Concretes 31
 Sulfate Resistance of Mortars and Concretes Containing Natural Pozzolan 33
 Combination of Sulfate and Chloride Attacks by Sea Water 35
 Effect of Natural Pozzolans on Suppressing the Alkali Aggregate Reaction 35
Freezing and Thawing of Concretes Containing
Natural Pozzolans ... 40
Application of Natural Pozzolans in Mortars and Concretes 40
Recent Researches on Natural Pozzolans 41
References .. 43

2 Fly Ash ... 47
Introduction .. 47
Physical, Chemical, and Mineralogical Properties
of Fly Ash ... 48
 Physical Properties .. 48
 Fineness ... 48
 Specific Surface Area ... 50
 Specific Gravity ... 51
 Chemical Composition ... 52
 Mineralogical Composition 56
The Fly Ash Hydration Reactions 57
 The Effect of Fly Ash on the Hydration of Cement Compounds . . 57
Factors Affecting Pozzolanic Reactivity of Fly Ashes 61
Effects of Fly Ash on the Properties of Fresh Concrete 63
 Influence of Fly Ash on the Setting Time of Portland Cement Concrete ... 64
Effect of Fly Ash on Workability, Water Requirement,
and Bleeding of Fresh Concrete 64
 Effect of Fly Ash on Temperature Rise of Fresh Concrete 69
Effect on the Mechanical Properties of Hardened Concrete 70
 Strength Development in Fly Ash Concrete 71
Effect of Fly Ash Type on Concrete Strength 72
Particle Size and Strength of Fly Ash Concretes 74
Effects of Temperature and Curing Regime on the Strength
Development in Fly Ash Concretes 77
Effect of Fly Ash on Elastic Properties of Concrete 81
Effect of Fly Ash on Creep Properties of Concrete 83
Effect of Fly Ash on Volume Changes of Concrete 85
Effects of Fly Ash on Permeability of Concrete 89
Effects of Fly Ash on Carbonation of Concrete 93
Effects of Fly Ash on the Durability of Concrete Subjected
to Repeated Cycles of Freezing and Thawing 101
Effects of Fly Ash on the Durability of Concrete Exposed
to Elevated Temperatures ... 110
Abraction and Erosion of Fly Ash Concrete 110
Effects of Fly Ash on the Durability of Concrete Exposed
to Chemical Attack .. 112
Effects of Fly Ash on Sulphate Resistance of Concrete 114
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Fly Ash on Alkali-Aggregate Reaction in Concrete</td>
<td>121</td>
</tr>
<tr>
<td>Effects of Fly Ash on the Corrosion of Reinforcing Steel in Concrete</td>
<td>131</td>
</tr>
<tr>
<td>Effects of Fly Ash on Concrete Exposed to Sea Water</td>
<td>133</td>
</tr>
<tr>
<td>Recent Development on the Durability of Fly Ash Concretes</td>
<td>135</td>
</tr>
<tr>
<td>Application of Fly Ash in Concrete</td>
<td>138</td>
</tr>
<tr>
<td>High-Strength Concrete</td>
<td>138</td>
</tr>
<tr>
<td>Roller-Compacted Concrete</td>
<td>142</td>
</tr>
<tr>
<td>References</td>
<td>145</td>
</tr>
<tr>
<td>3 Granulated Blast Furnace Slag</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td>Production</td>
<td>157</td>
</tr>
<tr>
<td>Physical, Chemical, and Mineralogical Properties</td>
<td>159</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>159</td>
</tr>
<tr>
<td>Chemical Composition</td>
<td>159</td>
</tr>
<tr>
<td>Mineralogical Properties</td>
<td>159</td>
</tr>
<tr>
<td>Structure of Glassy Slags</td>
<td>161</td>
</tr>
<tr>
<td>Hydraulic Properties of Slags</td>
<td>162</td>
</tr>
<tr>
<td>Hydration of Slag–Cement Mixture</td>
<td>165</td>
</tr>
<tr>
<td>Effect of Thermal Treatments</td>
<td>166</td>
</tr>
<tr>
<td>Effects of Slag on the Properties of Fresh Concrete</td>
<td>167</td>
</tr>
<tr>
<td>Workability</td>
<td>167</td>
</tr>
<tr>
<td>Bleeding and Segregation</td>
<td>168</td>
</tr>
<tr>
<td>Setting Time</td>
<td>169</td>
</tr>
<tr>
<td>Effects of Slag on the Mechanical Properties of Hardened Concrete</td>
<td></td>
</tr>
<tr>
<td>Strength Properties</td>
<td>169</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>173</td>
</tr>
<tr>
<td>Effect on Volume Changes of Concrete</td>
<td>173</td>
</tr>
<tr>
<td>Microstructure, Porosity and Permeability</td>
<td>177</td>
</tr>
<tr>
<td>Effect of Slag on Durability of Concrete</td>
<td>178</td>
</tr>
<tr>
<td>Effect of Slag on Carbonation of Mortars and Concrete</td>
<td>178</td>
</tr>
<tr>
<td>Effect of Chloride Ions on Durability of Concretes Containing Slag</td>
<td>179</td>
</tr>
<tr>
<td>Sulfate Resistance of Mortars and Concretes Containing Slag</td>
<td>181</td>
</tr>
<tr>
<td>Effect of Slag on Suppressing the Alkali Aggregate Reaction</td>
<td>183</td>
</tr>
<tr>
<td>Freezing and Thawing of Concretes Containing Slag</td>
<td>185</td>
</tr>
<tr>
<td>Application of Slag in Concrete</td>
<td>186</td>
</tr>
<tr>
<td>References</td>
<td>188</td>
</tr>
<tr>
<td>4 Silica Fume</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>193</td>
</tr>
<tr>
<td>Production</td>
<td>193</td>
</tr>
</tbody>
</table>
5 Metakaolin
Introduction
Production
Physical, Chemical, and Mineralogical Properties
Physical Properties
Chemical and Mineralogical Properties
Pozzolanic Activity
Effects of Metakaolin on the Properties of Fresh Concrete
Effects of Metakaolin on the Mechanical Properties
of Hardened Concrete
Strength of Mortars and Concretes
Modulus of Elasticity
Effect on Volume Changes of Concrete
Microstructure, Porosity and Permeability
Effect of Metakaolin on Durability of Concrete 240
Effect of Metakaolin on Carbonation of Mortars and Concretes 242
Effect of Chloride Ions on Durability of Metakaolin Cement Mortars and Concretes ... 243
 Sulfate Resistance of Mortars and Concretes Containing Metakaolin. 244
 Effect of Metakaolin on Suppressing the Alkali Aggregate Reaction .. 247
 Freezing and Thawing of Concretes Containing Metakaolin 249
 Application of Metakaolin in Mortars and Concretes 251
References ... 252

6 Rice Husk Ash ... 257
 Introduction .. 257
 Production .. 257
 Rice Husk ... 258
 Usage of Rice Husk .. 258
 Chemistry .. 258
 Pet Food Fiber ... 258
 Building Materials .. 259
 Fertilizer .. 259
 Sic Production .. 259
 Fuel ... 259
 Factors Influencing the Use of Rice Husk 259
 Rice Husk Ash Production .. 260
 Rice Husk Ash Optimization ... 262
 Physical and Chemical Properties of RHA 264
 Physical Properties .. 264
 Chemical Composition ... 264
 Pozzolanic Activity ... 266
 Effects of Rice Husk Ash on the Properties of Fresh Concrete 269
 Workability .. 269
 Air-Entrainment .. 270
 Consistency and Setting Times ... 270
 Effects of Rice Husk Ash on the Mechanical Properties
 of Hardened Concrete .. 272
 Compressive and Tensile Strengths 272
 Effect on Volume Changes of Concrete 281
 Drying Shrinkage .. 281
 Microstructure, Porosity and Permeability 282
 Effect of Rice Husk Ash on Durability of Concrete. 284
 Carbonation of Concretes Containing Rice Husk Ash 284
 Effect of Chloride Ions on Mortars and Concretes Containing
 Rice Husk Ash ... 285
Corrosion Resistance .. 289
Sulfate Resistance of Mortars and Concretes Containing Rice Husk Ash .. 290
Effect of Rice Husk Ash on Suppressing the Alkali Aggregate Reaction .. 293
Freezing and Thawing Resistance of Concretes Containing Rice Husk Ash .. 295
Deicing Salt Scaling Resistance of Mortars and Concretes Containing Rice Husk Ash .. 295
References .. 296

7 Limestone .. 299
Introduction .. 299
Production and Application .. 300
Physical Properties .. 301
Hydration Reaction ... 304
Effects Limestone on the Properties of Fresh Concrete .. 305
Bleeding ... 306
Setting Time .. 307
Heat of Hydration ... 308
Effects of Limestone on Mechanical Properties of Hardened Concrete .. 308
 Compressive Strength .. 308
 Tensile and Flexural Strengths, Modulus of Elasticity .. 310
 Shrinkage and Creep .. 310
Effect of Limestone on Durability of Concrete .. 311
 Permeability .. 311
Carbonation .. 312
Freeze/Thaw .. 314
Chloride Resistance .. 315
Corrosion .. 317
Sulfate Resistance .. 319
Alkali-Silica Reaction .. 321
Thaumasite Sulfate Attack ... 321
References .. 323

8 The Role of Supplementary Cementing Materials on Sustainable Development .. 327
Introduction .. 327
Embodied Energy ... 328
Greenhouse Gas Emissions and Global Warming .. 329
Contribution of Cement on CO₂ Emissions .. 329
Concrete Production .. 330
Reducing Energy and Emissions ... 331
Cement Replacement Materials
Properties, Durability, Sustainability
Ramezanianpour, A.A.
2014, XIII, 336 p. 200 illus., 34 illus. in color., Hardcover
ISBN: 978-3-642-36720-5