Contents

1 Laser Basics ... 1
 1.1 What is a Laser? ... 1
 1.2 Light–Matter Interaction ... 2
 1.3 Population Inversion ... 3
 1.4 From an Amplifier to an Oscillator 5
 1.4.1 Role of the Resonator 5
 1.4.2 Spatial Characteristics of the Emitted Laser Beam . 6
 1.4.3 The Spectrum of a Laser Oscillator 8
 1.5 Oscillation Condition .. 9
 1.6 How to Recognize Lasing? 11
References ... 12

2 Fundamentals of Organic Lasers 13
 2.1 Pi-Conjugated Molecular Systems 14
 2.1.1 General Properties ... 14
 2.1.2 Organic Semiconductors 16
 2.2 Photophysical Properties of Pi-Conjugated Systems 20
 2.2.1 Absorption of Light by Pi-Conjugated Systems 20
 2.2.2 Emission of Light by Pi-Conjugated Systems 29
 2.2.3 Jablonski Diagrams 32
 2.2.4 Photophysical Parameters Relevant for Organic Lasing 36
 2.2.5 Short and Long Wavelength Limits for Organic Lasers 38
 2.3 Triplet States and Their Influence on Lasing 41
 2.3.1 Nature of Triplet States 42
 2.3.2 The Exchange Energy 44
 2.3.3 Optical Generation of Triplet States by Intersystem Crossing 45
 2.3.4 Triplet Absorption 46
 2.3.5 Phosphorescence: Are Triplet Emitters Suitable for Lasing? 47
5 Novel Concepts for Organic Lasers

5.1 The Organic Laser Diode
5.1.1 History of a Long Quest
5.1.2 Evidence of Extra-Losses Compared to Optical Excitation
5.1.3 The Electrode Issue
5.1.4 The Polaron Issue
5.1.5 The Triplet Exciton Issue

5.2 The “Indirect Electrical Pumping” Strategy
5.2.1 Laser Diode Pumping
5.2.2 Light-Emitting Diode (LED) Pumping

5.3 Towards True Organic CW Lasers: Managing Triplet States
5.4 Organic Lasers at the Nanoscale
5.4.1 The “Spaser” and the Advent of Nanoplasmonics
5.4.2 Strong Coupling and the Organic Polariton Laser
5.4.3 The Photon Bose–Einstein Condensate

References

6 Towards Applications of Organic Solid-State Lasers

6.1 Toward Real-Life Applications: The Major Issues
6.1.1 Lowering the Threshold
6.1.2 Extending the Wavelength Coverage
6.1.3 Strategies for Advanced Wavelength Tunability
6.1.4 Improving the Conversion Efficiency and Output Power
6.1.5 What About Beam Quality?
6.1.6 Enhancing the Lifetime of the Devices

6.2 Spectroscopy
6.3 Sensing
6.4 Telecommunications

References

Index
Organic Solid-State Lasers
Forget, S.; Chénais, S.
2013, XI, 169 p. 88 illus., 78 illus. in color., Hardcover
ISBN: 978-3-642-36704-5