Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features

Gerald Kehr, Sina Schwendemann, and Gerhard Erker

Abstract Intramolecular vicinal and geminal frustrated Lewis pairs (FLPs) featuring bulky substituents at phosphorus or nitrogen and strongly electron-withdrawing bulky pentafluorophenyl substituents at boron undergo a variety of addition and/or activation reactions with small molecules. A number of examples of such reactions are presented and discussed, among them the FLP activation of dihydrogen to give zwitterionic phosphonium (or ammonium)/hydridoborate zwitterions. Intramolecular FLPs also add to organic carbonyl compounds (including carbon dioxide), to alkenes and alkynes (including conjugated dienes, diynes or enynes), to heterocumulenes, to azides, and to nitric oxide.

Keywords FLP addition reactions · Small molecule activation · Synergistic reactions · Vicinal and geminal frustrated Lewis pairs

Contents
1 Introduction ... 46
2 Vicinal Phosphorus/Boron FLPs and Their Reaction with Dihydrogen .. 47
3 Intramolecular N/B FLPs .. 55
4 FLP Reactions with π-Systems and More .. 63
5 Geminal FLPs .. 74
6 Conclusions .. 76
References .. 77
Abbreviations

Bu Butyl
CP Cross polarization
DABCO 1,4-Diazabicyclo[2.2.2]octane
DEAD Diethyl azodicarboxylate
DFT Density functional theory
equiv. Equivalent(s)
Et Ethyl
FLP Frustrated Lewis pair
gem. Geminal
h Hour(s)
HAA Hydrogen atom abstraction
i-Pr iso-Propyl
LA Lewis acid
LB Lewis base
MAS Magic angle spinning
Me Methyl
Mes Mesityl, 2,4,6-trimethylphenyl
min Minute(s)
NMR Nuclear magnetic resonance
Ph Phenyl
Pr Propyl
r.t. Room temperature
s-Bu sec-Butyl
THF Tetrahydrofuran
t-Bu tert-Butyl
vic. Vicinal

1 Introduction

Lewis acids (LA) and Lewis bases (LB) usually undergo strong adduct formation when brought together in solution. The ubiquitous Lewis acid/base adduct formation [1] is analogous to the neutralization reaction in Brønsted acid/base chemistry [2]. The resulting LA/LB adducts may have very interesting properties in themselves, e.g., as is found in the chemistry of ammonia borane (H$_3$NBH$_3$) [3, 4], but they have lost the typical chemical features of their original components. Lewis acid/Lewis base adduct formation can effectively be hindered or even completely suppressed by steric and/or electronic means. Placing very bulky aryl or alkyl substituents at, e.g., phosphorus or nitrogen or even carbon based Lewis bases and combining them with, e.g., strongly electrophilic R-B(C$_6$F$_5$)$_2$ type Lewis acids has often resulted in situations of co-existent pairs of active Lewis acids and Lewis bases in solution. Sometimes they appeared to be independent of each other,
sometimes they were found to be in equilibrium with their respective LA/LB adducts, sometimes they were weakly interacting. Such frustrated Lewis pairs (FLPs) [5–16] can, of course, show reactions of their separate LA and LB components, but they are special in that they have the potential to have the Lewis acid/Lewis base components reacting synergistically with added substrates. There are indications that weak interactions between the Lewis acid/Lewis base components of a frustrated Lewis pair might favor synergistic reaction behavior, maybe it is even mandatory in some cases. Intramolecular FLPs, where active Lewis acid and Lewis base components are closely connected by sufficiently flexible bridges, may be advantageous to introduce and control typical frustrated Lewis pair behavior. Here we report about a selection of intramolecular FLPs, mostly, but not exclusively, originating from our research group in Münster and our collaborating partners, which may serve to illustrate some of the remarkable and extraordinary features that such reactive bifunctional main group element compounds may exhibit.

2 Vicinal Phosphorus/Boron FLPs and Their Reaction with Dihydrogen

We first reacted the bulky starting material dimesitylvinylphosphane (1a) with Piers’ borane [HB(C₆F₅)₂] [17–21]. The system forms a Lewis acid/Lewis base adduct (2a, Scheme 1) at low temperature. However, this has only a fleeting existence, since the 1a/HB(C₆F₅)₂ reaction mixture undergoes a rapid hydroboration reaction of the vinyl substituent at room temperature with the usual anti-Markovnikov orientation to yield the intramolecular FLP 3a [22].

The spectroscopic data indicate that 3a is a weakly interacting intramolecular FLP system. In solution it features NMR shifts of the heteronuclei [3¹P: δ 20.6, 1¹¹B: δ 8.5, 1⁹F: δ −128.8 (o), −157.0 (p), −163.6 (m)] that are intermediate between a phosphane/phosphonium, and borane/borate character. A detailed solid state MAS NMR analysis confirmed this [23]. Among other parameters the ¹¹B NMR quadrupolar coupling constant of 3a pointed to a P···B interacting system with a boron center deviating only slightly from a trigonal planar BC₃ coordination sphere and a tentative P···B distance of ca. 2.2 Å. The DFT analysis of 3a gave a similar result. According to this computational analysis the weak internal adduct 3a equilibrated with a pair of open isomers 3a’ which were of slightly higher energy. One had the two functional groups oriented gauche to each other, whereas the other showed them in an anti-periplanar conformational arrangement [22].

Compound 3a reacts rapidly with dihydrogen under mild conditions. It was one of the most active metal-free dihydrogen activations at the time when it was first studied. It splits dihydrogen at close to normal conditions (r.t., 1.5 bar H₂ pressure, pentane solution) within minutes. The pale yellow solution of 3a turns colorless and the zwitterionic phosphonium/hydridoborate product 4a precipitates from the solution. It was characterized by X-ray diffraction (Fig. 1) and by spectroscopy
H NMR: δ 7.87 (1 J PH ~ 490 Hz), 31P: δ –6.5 [P–H], 11B: δ –20.1 (1 J BH ~ 90 Hz) [B–H]]. The reaction was also carried out with dideuterium which confirmed the heterolytic dihydrogen splitting by observing the corresponding [B]-D and [P]-D signals in 4a-D2 (Scheme 1 and Fig. 1) [22].

Compound 4a is able to catalyze the hydrogenation of a variety of enamines 5 or imines 6 to the corresponding amine products 7 (Scheme 2) [24, 25] (Axenov, 2009, unpublished results).

Many FLPs have been shown to be quite reasonable catalysts for the metal-free catalytic hydrogenation of electron-rich unsaturated substrates such as enamines and dienamines (Scheme 2) [22, 24, 25] (Axenov, 2009, unpublished results), in addition to silyl enolethers [26], of a variety of imines and some aziridines [27–32].
D. W. Stephan recently showed that even the arene rings in some aniline derivates can be hydrogenated by FLP systems to yield cyclohexylamines [33]. We showed that FLP catalyzed reactions can provide sufficiently mild conditions for reactions with rather sensitive organometallic substrates [14, 25, 34–38] (Axenov, 2009, unpublished results). All these developments posed the question of whether FLP induced hydrogenation of carbon–carbon double or triple bonds bearing strongly electron-withdrawing substituents could be achieved. For that purpose we treated the conjugated ynone \(8a \) with the zwitterionic H\(^+\)/H\(^-\) activation product \(4a \). We observed a rapid transfer of the H\(^+\)/H\(^-\) pair at room temperature with formation of the cis-enone cis-9. Unfortunately, in this case the liberated FLP \(3a \) reacted faster with the ynone substrate \(8a \) to give 10a (Scheme 3). As a result, this FLP induced hydrogenation of the electron-poor carbon–carbon triple bond in \(8a \) remained stoichiometric [39].

We prepared a variety of analogs of the ethylene-bridged P/B FLP \(3a \) by hydroboration of a series of substituted dimesitylalkenylphosphanes with [HB(C\(_6\)F\(_5\))\(_2\)]. The cyclohexenylphosphane derived FLP \(3b \) is a typical example [40]. Hydroboration of \(1b \) with Piers’ borane gave the P/B FLP \(3b \) in good yield. Compound \(3b \) is chiral; it contains two chiral centers. Due to the fixed cis-[B]-H addition, the stereochemistry of the underlying hydroboration reaction, these chiral centers are dependent on each other. Only the rac-trans-diastereoisomer was formed. It is
characterized by having the bulky phosphanyl- and boryl-substituents \textit{trans}-1,2-attached at the cyclohexane framework. Compound \(3b\) was characterized by X-ray diffraction (Fig. 2). In the crystal the cyclohexane ring of compound \(3b\) adopts a chair conformation with the C1-P and C2-B vectors oriented \textit{trans}-bis-equatorially. There are two crystallographically independent molecules in the unit cell. Both show P···B interactions, although the P···B distance at 2.188(5) Å (molecule A) and 2.206(5) Å (molecule B) is at the long end of phosphane/borane interactions [41–47].

In solution we observed the \(^{19}\text{F}\) NMR signals corresponding to a pair of diastereotopic C\(_6\)F\(_5\) groups at boron at low temperatures, due to the tetracoordination at boron. Opening of the P–B linkage would result in the formation of a planartricoordinate boron center in the reactive intermediate \(3b'\); its pair of C\(_6\)F\(_5\) substituents would, consequently, be homotopic. This feature allowed us to determine the activation energy of the reversible P–B bond cleavage in \(3b\) by temperature dependent dynamic \(^{19}\text{F}\) NMR spectroscopy. From the coalescence of the respective pairs of \textit{ortho}-F resonances of the diastereotopic C\(_6\)F\(_5\) groups at boron we obtained the Gibbs activation energy of phosphane–borane dissociation in \(3b\) at \(\Delta G_{\text{dis}}(298 \text{ K}) = 12.1 \pm 0.3\) kcal mol\(^{-1}\). Thus, the FLP \(3b\) is a weak internal phosphane–borane adduct. It opens rapidly with a P–B bond dissociation energy of <12 kcal mol\(^{-1}\).

Consequently, the FLP \(3b\) reacts very rapidly with dihydrogen. \(\text{H}_2\) is heterolytically cleaved by \(3b\) at −20 °C with formation of the zwitterionic \([\text{P}]^+\text{-H/}[\text{B}]^-\text{-H}\) product \(4b\) (Scheme 4 and Fig. 3) [40].

We prepared a variety of related bridge-substituted vicinal P/B FLPs analogously by hydroboration of the respective alkenylidimesitylphosphanes with Piers’ borane \([\text{HB}(\text{C}_6\text{F}_5)_2]\), the compounds \(3\text{c–e}\) being typical examples (Scheme 5) [48]. Their NMR spectra indicated internal P–B coordination. Due to the presence of a chiral carbon center in the bridge, each of these compounds features pairs of
Scheme 4 Formation of the FLP 3b and its reaction with dihydrogen

![Diagram of the formation of the FLP 3b and its reaction with dihydrogen](image)

Fig. 3 Molecular structure of the H_2-cleavage product 4b

![Molecular structure of the H_2-cleavage product 4b](image)

Scheme 5 Examples of FLPs 3 and their activation barriers for P--B dissociation

![Diagram of the molecular structure of FLPs 3](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Activation Barrier [kcal mol(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3c</td>
<td>11.7 (280 K)</td>
</tr>
<tr>
<td>3d</td>
<td>12.6 (303 K)</td>
</tr>
<tr>
<td>3e</td>
<td>11.8 (298 K)</td>
</tr>
</tbody>
</table>
diastereotopic C₆F₅ substituents at boron. From the coalescence of their respective ¹⁹F NMR features we have determined the activation barrier of P–B bond dissociation (ΔG_{dis}) for each of these compounds (Scheme 5). They are similar in magnitude as found for 3b (see above). Compound 3c splits dihydrogen under our typical mild reaction conditions (2.5 bar H₂, r.t.), whereas the more bulky compounds 3d,e were unreactive even at 60 bar H₂ pressure at r.t. [48].

Hydroboration of di-tert-butylphosphinopropyne (11a) with [HB(C₆F₅)₂] gave the unsaturated FLP 12a. It slowly splits dihydrogen under more forcing conditions (60 bar) to give the zwitterion 13a (Scheme 6) [24]. The dimesitylphosphino-substituted FLPs 12b,c were prepared analogously by hydroboration of the respective Mes₂P-substituted alkynes 11b,c. These systems were themselves inert toward H₂ under our typical conditions, but they rapidly accepted the H⁺/H⁻ pair from the saturated FLP hydrogen activation product 4a. This hydrogen transfer reaction was developed into a protocol for the formation of the products 13b,c with dihydrogen catalyzed by the 3a/4a FLP/FLP-H₂ pairs [24]. Both the products 13b,c were characterized by X-ray diffraction (Fig. 4 for 13b). The FLP 13b was used as a selective catalyst for the hydrogenation of an enamine using ammonia borane (H₃NBH₃) as a hydrogen source [49, 50].

The related unsaturated vicinal cis-FLPs 14 were prepared in different ways. Originally, such compounds were obtained by treatment of alkynyborates (e.g., 15) with R₂PCl reagents [51–55]. The reaction proceeds with aryl migration from boron to the adjacent carbon atom and might be regarded as an early precursor of the 1,1-carboboration reaction [56, 57]. Grobe, Würthwein et al. [58] recently reported a remarkable related formation of an example of this by means of the intermediate formation of 16. These cis-14 systems do not seem reactive towards H₂ but some of these bifunctional FLP-like compounds undergo interesting reactions with a variety of metal complexes (as do D. Bourissou’s related phenylene-bridged FLP derivatives 17) [59–62] (Scheme 7).

We have developed a convenient new synthetic pathway to the unsaturated P/B systems 14 by making use of the recently discovered advanced variants of the 1,1-carboboration reaction ([63]; see also [64–68]). For this purpose we treated,
e.g., the dimesitylphosphinoacetylene derivative 11d (Scheme 8) with B(C₆F₅)₃ [69, 70] at room temperature in pentane. Under these conditions B(C₆F₅)₃ adds to the alkyne and initiates migration of the Mes₂P moiety along the acetylenic carbon framework. After 30 min reaction time we isolated the product 18 [71]. The X-ray crystal structure analysis of 18 revealed the presence of the unsaturated cationic three-membered heterocycle to which the borate counter anion is bonded (Fig. 5).
This class of compounds exhibits very characteristic NMR features \[71, 72\]; compound 18 shows, e.g., a 31P NMR resonance at $\delta -137.8$ and a 11B NMR signal at $\delta -16.5$. In the phosphirenium-borate 18 the dimesitylphosphino group had migrated about half way across the acetylenic C≡C bond. Heating to 105°C was necessary to complete the 1,1-carboboration reaction to eventually give the product 14c. Compound 14c shows heteronucleic NMR resonances at $\delta 14.6$ (31P) and $\delta 0$ (11B), respectively. The X-ray crystal structure analysis revealed a
pronounced B–P interaction between the \((C_6F_5)_2B\) and \(\text{Mes}_2P\)-substituents which are *cis*-oriented at the bridging unsaturated \(C_2\)-framework (Fig. 6).

We prepared a variety of differently substituted P/B systems 14 by this advanced 1,1-carboboration method [73] and used them for an in depth analysis of the bonding between phosphorus and boron in such systems by solid state NMR techniques [23]. Both the \(^{11}B\) NMR isotropic chemical shifts and the nuclear electric quadrupolar coupling parameters were found to serve as sensitive experimental measures. In addition the large \(^{31}P\)-\(^{11}B\) scalar spin–spin coupling of \(J_{11} \geq 50\) Hz, obtained from the \(^{31}P\{^1H\}\)-CPMAS NMR experiments, gave further evidence for the covalent P–B bonding component in such compounds.

3 Intramolecular N/B FLPs

Repo, Rieger et al. prepared the \(C_3\)-bridged N/B FLP 19 by a conventional route involving metalation. The N/B system 19 is an active frustrated Lewis pair that heterolytically cleaves dihydrogen to yield 20 ([74, 75]; see also [76]). The \([N]^+\text{-H/}[B]^\text{-H}zwitterion 20 was thoroughly characterized, including a neutron diffraction
study [77]. The system is special since it is one of the rare examples of reversible H2-addition (and activation) by a frustrated Lewis pair [5, 26] (Scheme 9).

We prepared a series of vicinal N/B FLPs by enamine hydroboration [78]. A typical example is the reaction of the acetophenone derived enamine 5a with [HB(C6F5)2] which gave the phenyl substituted vicinal N/B FLP 21a in good yield. Compound 21a features a heterocyclic four-membered ring structure. The phenyl substituted bridge-carbon atom C1 is a chiral center. Therefore, we observed 1H/13C NMR signals of the diastereotopic methylene groups of the piperidino substituent. The C6F5 groups at boron are also diastereotopic in 21a (at 298 K), which indicated N–B coordination. The related compound 21b was obtained by [HB(C6F5)2] hydroboration of the enamine piperidino cyclohexene (Scheme 10). The X-ray crystal structure analysis showed N–B coordination. Compound 21b contains a heterocyclic four-membered ring structure (Fig. 7).

The N–B bond in compound 21a is weak. This becomes evident from the dynamic 19F NMR spectra. The system shows signals of pairs of diastereotopic C6F5 groups below ca. 320 K (Fig. 8). Warming leads to coalescence of both pairs of p-C6F5 and m-C6F5 signals, indicating rapid reversible N–B bond rupture and equilibration with the (invisible) reactive intermediate 21a' on the 19F NMR time scale. From the dynamic 19F NMR spectra we estimate a barrier for the N–B opening in 21a of ΔGdisf (318 K) = 13.8 ± 0.2 kcal mol⁻¹ (Fig. 8). A similar value was found for the ring opening process of the N/B FLP 21b (Scheme 10).

It appears that the intramolecular boron Lewis acid interaction with the tert-amine Lewis base in the FLPs 21 is slightly stronger than with the tert-phosphanes in 3. However, the B–N bonds in the systems 21 must still be regarded as being weak (bond dissociation energies <13 kcal mol⁻¹). These LA–LB bonds open and close rapidly. Both the N/B FLPs 21a and 21b react readily with dihydrogen to yield the ammonium/hydridoborate zwitterions 22a and 22b, respectively. Both were characterized by X-ray diffraction (22a, Fig. 9) and by spectroscopy [22a: 11B NMR: δ ~22.8 (d, JBH ~80 Hz), 1H NMR: δ 3.08 (br, 1:1:1:1 q, [B]-H), δ 7.46 ([N]-H)] (Scheme 11).
Scheme 10 Formation and ring opening of the FLPs 21a and 21b

Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features 57

Fig. 7 Molecular structure of the N/B FLP 21b (N–B = 1.824(6) Å)
We prepared a variety of such vicinal N/B FLPs by means of the enamine hydroboration reaction (Scheme 12). The compounds 21c,d did not react with dihydrogen under our typical conditions.

The nitrogen containing FLP 21b shows a chemical peculiarity that appears upon its treatment with aldehydes or ketones. It is well known that B(C₆F₅)₃ is able
to abstract hydride anion from the α-position of tertiary amines [37, 79–84]. In the case of the N/B FLP 21b this could lead, e.g., to the formation of the iminium/hydridoborate zwitterion 23a (Scheme 13). Without added reagents we did not observe its formation. However, added benzaldehyde or benzophenone
resulted in the formation of the respective trapping products, namely the zwitterionic systems 23b and 23c, respectively [78].

Previously, Piers reported the synthesis of a phenylene-bridged N/B system 25. The separate addition of hydride followed by protonation may have generated the ammonium/hydridoborate system 27, which was labile with regard to rapid H₂ elimination (Scheme 14) ([85]; see also [86]).
The monomeric phosphido-boranes $R_2P–B(C_6F_5)_{2}$ (R = cyclohexyl or tert-butyl) show a related FLP behavior. They react slowly at 60 °C with dihydrogen to give the phosphane–borane adducts $R_2HP–BH(C_6F_5)_{2}$. In contrast, the dimeric phosphido–boranes $[R_2P–B(C_6F_5)_{2}]_{2}$ did not react with H_2 under these conditions (Scheme 15)[87, 88].

Stephan and coworkers have recently shown that boron-amidinates $HC(RN)_{2}B(C_6F_5)_{2}$ (R = i-Pr, t-Bu) react with benzaldehyde to give 32 (R = i-Pr, t-Bu). In addition, these species were also found to react with MeCN to give 33. These reactions are thought to proceed via the ring opening of the boron-amidinate, although this could not be confirmed spectroscopically. However, this proposition was supported by thermolysis of the boron-amidinate which gave 34 (Scheme 16)[89].

The systems 31 were also shown to insert CO and isonitriles into the B–N bond to yield the respective five-membered heterocycles 35 and 36. Typically, 31 also reacts with a carbodiimide to give 37 and with carbon dioxide to yield the product 38[89] (Scheme 17).

![Scheme 17](image-url)
Scheme 17 Reactions of the boron-amidinates 31

![Scheme 18](image-url)
Scheme 18 Olefin addition reactions to the FLP 3a

The monomeric phosphido-boranes $R_2P–B(C_6F_5)_{2}$ (R = cyclohexyl or tert-butyl) show a related FLP behavior. They react slowly at 60 °C with dihydrogen to give the phosphane–borane adducts $R_2HP–BH(C_6F_5)_{2}$ 29. In contrast, the dimeric phosphido–boranes $[R_2P–B(C_6F_5)_{2}]_{2}$ 30 did not react with H_2 under these conditions (Scheme 15) [87, 88].

Stephan and coworkers have recently shown that boron-amidinates $HC(RN)_{2}B(C_6F_5)_{2}$ 31 (R = i-Pr, t-Bu) react with benzaldehyde to give 32 (R = i-Pr, t-Bu). In addition, these species were also found to react with MeCN to give 33. These reactions are thought to proceed via the ring opening of the boron-amidinate, although this could not be confirmed spectroscopically. However, this proposition was supported by thermolysis of the boron-amidinate which gave 34 (Scheme 16) [89].

The systems 31 were also shown to insert CO and isonitriles into the B–N bond to yield the respective five-membered heterocycles 35 and 36. Typically, 31 also reacts with a carbodiimide to give 37 and with carbon dioxide to yield the product 38 [89] (Scheme 17).
Fig. 10 Molecular structure of compound 39

Fig. 11 A view of the framework of the molecular structure of 40
4 FLP Reactions with π-Systems and More

FLPs often add to olefinic carbon–carbon π-systems [7, 36, 38, 90–92]. A typical example is the reaction of the intramolecular FLP 3a with ethylvinylether. The frustrated Lewis pair adds to the electron-rich carbon–carbon double bond regioselectively to yield the six-membered heterocyclic product 39 (Scheme 18) [90]. The product was characterized by X-ray diffraction (Fig. 10) and was shown to exhibit a typical chair-like conformation of the central framework [93].

The FLP 3a adds cleanly to the norbornene C=C double bond to give selectively the exo-2,3-P/B addition product 40. Although only this product was observed,
another possible rearranged product was calculated to be thermodynamically slightly favored. The selective formation of 40 without any of the typical norbornyl cation rearrangement products is in accord with the result of a computational study that indicated an asynchronous concerted 1,2-P/B FLP addition pathway of 3a to norbornene from the exo-face (Fig. 11 for the structure of compound 40) [90, 93].

A similar reaction was observed upon treatment of the FLP 3a with 6,6-dimethylpentafulvene (41) in a 1:2 molar ratio. In this case the frustrated Lewis pair trapped the (otherwise unobserved) [6+4] fulvene dimer 42 by 1,2-P/B addition to one of its C=C double bonds (Scheme 19 and Fig. 12) to yield 43 [94].

Scheme 20 Reaction of an aminofulvene with FLP 3a

Scheme 21 Reaction of FLP 3a with activated alkenes
6-Dimethylamino-6-methylpentafulvene (44) undergoes a curious reaction with the FLP 3a [95]. It readily forms the product 46 by a sequence that involves B–C bond cleavage. We had to assume that a retro-hydroboration reaction took place along the favored pathway (Scheme 20) that eventually was completed by addition of the in situ generated [HB(C\(_6\)F\(_5\))\(_2\)] reagent to the substituted fulvene derivate 45.

The FLP 3a reacts with dimethylfumarate by 1,2-P/B addition to the activated carbon–carbon double bond to give the six-membered heterocycle 47 that features the pair of –CO\(_2\)Me substituents in trans-1,2-positions. The same product is obtained from the reaction of 3a with dimethylmaleate, which indicates a conventional step-wise reaction mechanism (Scheme 21 and Fig. 13). A closely related reaction takes place upon treatment of 3a with diphenylbutendione (48), only in this case O–B bond formation is favored over C–B bond formation in the second step to yield the product 49 (Scheme 21) [96].

In the formation of the product 49 we see the involvement of the carbonyl functionality. This is often observed in FLP reactions. Typical examples are the 1,2-carbonyl addition reactions of 3a to reactive aldehydes, such as benzaldehyde...
(to give 50) [97]. In a direct competition the addition of 3a to the –CH=O group in trans-cinnamaldehyde forming compound 51 is strongly favored over any addition to the conjugated carbon–carbon double bond (Scheme 22) [90].

The situation which arises upon reacting the intramolecular P/B FLP 3a with acetylenic esters 52 or conjugated ynones 8 is more subtle. The acetylenic ester 52a itself was not reactive enough to allow for a clean product formation upon treatment with the intramolecular FLP 3a. However, by preactivating 52a with B(C₆F₅)₃ the
reaction proceeded to give the 1,2-addition product (53) of 3a to the C≡C triple bond of the substrate 52a [96]. The more reactive conjugated ynone 8b did not require any extra activation to react with 3a. It formed the six-membered addition product 54 when heated under reflux (Scheme 23) [39].

However, the formation of the six-membered products is an exception in the addition reaction of an intramolecular vicinal FLP to conjugated ynone substrates. Usually the formation of eight-membered heterocyclic compounds involving participation of the carbonyl oxygen atom is thermodynamically favored [39]. A typical example arose when the FLP 3a was reacted at room temperature with the ynone 8c to give the eight-membered addition product 55. Apparently, 55 is
formed in a two step reaction sequence involving a tautomeration step before finally closing the medium sized ring by B–O bond formation (Scheme 24).

We also reacted a series of non-enolizable conjugated yrones 8a,d,e with the intramolecular P/B FLP 3a. They all directly gave the respective eight-membered heterocyclic allenic boron enolate products 10 (Scheme 25 and Fig. 14) [39].

The chemistry of these compounds turned out to be important for our ongoing development of FLP-derived catalysts for the metal-free hydrogenation of electron-poor alkynes and alkenes [39].

Conjugated enynes seem to react similarly with FLPs [98, 99]. Treatment of 2-methyl-1,3-butene with Mes₂PCH₂CH₂B(C₆F₅)₂ (3a) at room temperature gave a ca. 1:2 mixture of the products 56 and 57 (Scheme 26). Compound 56 is a very typical reaction product of FLPs with terminal acetylenes (for further examples see below). The medium ring-sized heterocyclic allene 57 is a remarkable compound, formed by a 1,4-FLP addition reaction to the conjugated π-system of the enyne reagent [98]. The X-ray crystal structure analysis of 57 (Fig. 15) revealed that this compound contains an almost regular allene unit – the angle between its substituents planes at the allene termini amounts to ca. 75°, i.e., not too far away from the 90° angle of an ideal allene structure. The central carbon atom of the cumulated C=C=C unit shows a typical allene 13C NMR resonance (δ 204.5 ppm).

A similar reaction took place when the intramolecular FLP 3a was reacted with conjugated diynes 58a,b (Scheme 26). We isolated the corresponding 1,4-FLP addition products 59a,b. The X-ray crystal structure analysis of 59b (Fig. 16)
confirmed the formation of the substituted 1,2,3-butatriene substructure inside the strained eight-membered heterocyclic ring system. It exhibits some deviation of the C=C=C moiety from linearity featuring a pair of C–C–C angles of 161.1(2)° and 165.0(2)°. The P–CH₂–CH₂–B unit shows a dihedral angle of −129.8(2)°. This unit does not conformationally equilibrate at r.t. on the NMR time scale. Consequently, we observed pairs of diastereotopic C₆F₅ substituents at boron and mesityl groups at phosphorus [98].

FLPs very often react with terminal acetylenes by means of deprotonation followed by boron–acetylide bond formation. The formation of compound 60 is a
Scheme 28 Reactions of FLPs with donor molecules

Scheme 29 Various addition reactions to P/B FLPs

Fig. 17 Molecular structure of the PhNO addition product 67
typical example [90]. The N/B FLPs often undergo analogous H\(^+\) abstraction reactions with 1-alkynes, e.g., 21a → 61 (Scheme 27) [78].

The FLP 3a reacts with a variety of heteroatom containing substrates. Typical examples are the reactions with strong donor reagents such as nitriles (e.g., 62), isonitriles, or pyridine. In all these cases the intramolecular P···B interaction is lost with formation of the respective donor adducts to the borane functional group (Scheme 28) [97]. The N/B FLPs react similarly to form, e.g., 63 [78].

The heterocumulene phenylisocyanate adds to the intramolecular FLP 3a via its reactive C=O functionality (64) [40, 97], as does the phenylene-bridged P/B system 17a described by Bourissou et al. (65) (Scheme 29). The latter also adds to the –N=N– bond of DEAD ([59, 100]; see also [101]).
In a related study it was shown that Mes$_2$PCH$_2$CH$_2$B(C$_6$F$_5$)$_2$ (3a) adds to the –N=O function of nitrosobenzene to yield the six-membered heterocyclic product 67 (Scheme 29 and Fig. 17) [97].

Some FLPs react cleanly with organic azides. The formation of the five-membered heterocyclic product 68 obtained by N,N-addition of 3a to phenylazide is a typical example. In the crystal compound 68 features an alternating N–N=N bond sequence (1.374(2) Å/1.254(2) Å) (Scheme 30 and Fig. 18) [97].

The intramolecular FLP 3a reacts readily with nitric oxide (NO) by N,N-addition to give the five-membered FLPNO\(^{•}\) radical 69 in high yield. Compound 69 is the parent of a novel type of persistent aminoxyl radicals. It undergoes H-atom abstraction (HAA) reactions with a variety of hydrocarbon substrates to form the diamagnetic FLPNOH product 70 (Scheme 30). The FLPNO\(^{•}\) radical 69 was characterized by X-ray diffraction (Fig. 19) [102, 103]. A detailed description of the chemistry of these new FLP derived nitroxide radicals is provided within this Topics Curr. Chem. volume by a separate contribution by T. W. Warren and G. Erker on “Radical Frustrated Lewis Pairs”.

There is great interest in the binding and chemical conversion of carbon dioxide. Frustrated Lewis pair chemistry has made some contributions to this field [104, 105]. We have observed that the intramolecular FLP 3a is able to bind carbon dioxide rapidly under suitable conditions to form the 1,2-P/B addition product 71 (Scheme 31) [106].

![Molecular structure of the FLPNO\(^{•}\) aminoxyl radical 69](image1)

Fig. 19 Molecular structure of the FLPNO\(^{•}\) aminoxyl radical 69

Scheme 31 Reactions of FLP 3a with carbon dioxide

![Scheme 31](image2)
The compound precipitated in high yield as a white solid upon exposure of a pentane solution of 3a to carbon dioxide at ambient temperature. When brought back into solution the adduct 71 rapidly lost CO$_2$ at temperatures above ca. −20 °C. Low temperature spectroscopy characterized the new compound (e.g., 13C(C=O):δ 160.5 ppm). Crystallization at −36 °C gave single crystals of 71 suited for the X-ray crystal structure determination (Fig. 20). A detailed DFT analysis indicated that the addition reaction of the P/B FLP 3a to a C=O bond of carbon dioxide is probably a concerted reaction. According to this analysis both the newly formed P–C and the B–O interactions have become almost equally established in the (rather symmetrical) transition state of this reaction [106].
5 Geminal FLPs

In the literature one can find a variety of geminal P/B systems. Some of these were used as ligands in coordination chemistry (see for example [107–109]) whereas others were employed as Lewis acid catalysts [110, 111].

We have used weakly Lewis basic pentafluorophenyl substituted phosphane building blocks to construct electronically modified intramolecular FLPs. For that purpose we prepared the \((\text{C}_6\text{F}_5)_2\text{P-vinyl reagent and treated it with the HB(}\text{C}_6\text{F}_5)_2\text{hydroboration reagent. The ensuing hydroboration reaction proved to be regio-

unselective, yielding a 2:1 mixture of the vicinal and geminal P/B-FLPs [112]. Introduction of a directing substituent resulted in regioselective geminal FLP formation. The \((\text{C}_6\text{F}_5)_2\text{P-propenyl (72) system added the HB(}\text{C}_6\text{F}_5)_2\text{reagent regioselectively to give the geminal FLP 73 in good yield (Scheme 32). NMR

Scheme 33 Addition of mesitylazide to the geminal FLP 73

Fig. 21 A view of the molecular structure of compound 77

In the literature one can find a variety of geminal P/B systems. Some of these were used as ligands in coordination chemistry (see for example [107–109]) whereas others were employed as Lewis acid catalysts [110, 111].

We have used weakly Lewis basic pentafluorophenyl substituted phosphane building blocks to construct electronically modified intramolecular FLPs. For that purpose we prepared the \((\text{C}_6\text{F}_5)_2\text{P-vinyl reagent and treated it with the HB(}\text{C}_6\text{F}_5)_2\text{hydroboration reagent. The ensuing hydroboration reaction proved to be regio-

unselective, yielding a 2:1 mixture of the vicinal and geminal P/B-FLPs [112]. Introduction of a directing substituent resulted in regioselective geminal FLP formation. The \((\text{C}_6\text{F}_5)_2\text{P-propenyl (72) system added the HB(}\text{C}_6\text{F}_5)_2\text{reagent regioselectively to give the geminal FLP 73 in good yield (Scheme 32). NMR
spectroscopy indicated an open P/B FLP with no appreciable direct P···B interaction. This was evident from the 11B NMR resonance of 73 ($\delta = 71$) and its 19F NMR features ($\Delta\delta_{np} = 15.1$). Compound 73 did not activate dihydrogen under our typical conditions but reacted readily with a variety of unsaturated substrates by 1,2-addition, e.g., ethene, p-tolyl isocyanate, or 1-pentyne to yield 74, 75, and 76, respectively [100–112].

The geminal P/B FLP 73 reacted with mesitylazide by 1,3-addition to give the six-membered heterocyclic product 77 (Scheme 33 and Fig. 21) [112]. The X-ray
crystal structure analysis revealed almost identical N1-N2 (1.304(3) Å) and N2-N3 (1.306(3) Å) bond lengths [113, 114].

Hydroboration of the electron deficient alkynyl phosphane 11d with HB(C₆F₅)₂ gave a 7:1 mixture of the products 78 and 79 [115]. The typical FLP reactivity of the non-internally coordinating major (sp²)C₁-bridged compound 78 was probed from this mixture. It added cleanly to alkynes to give 80 and to aryl isocyanates affording 81 (Scheme 34). The addition product of, e.g., benzaldehyde 82 featured dynamic NMR spectra indicating reversible ring opening by P–C bond rupture (Scheme 34 and Fig. 22).

Lammertsma et al. prepared the CH₂-bridged P/B FLP 83 which contains phenyl substituents at boron [116]. This less Lewis acidic but markedly more Lewis basic FLP was able to activate dihydrogen affording 84. It reacted with CO₂ and added to the C=O bond of an isocyanate to give 85 and 86, respectively (Scheme 35).

The FLP 87 even added alkali metal hydrides synergistically (Scheme 36) [117].

6 Conclusions

We started this work by studying P–B coordination and conformational behavior of intramolecular oligomethylene-linked phosphane/borane systems [42, 48] followed by the synthesis of the vicinal FLP Mes₂PCH₂CH₂B(C₆F₅)₂ (3a). This system
turned out to be a very reactive frustrated Lewis pair that was able to react with a great variety of small molecules, often in a unique manner. The phosphane and the borane in this “archetypical” intramolecular FLP do interact but (as we have shown with the aid of its chiral derivatives) their interaction is weak. In addition a current DFT analysis by S. Grimme et al. has shown that the four-membered heterocyclic global minimum structure of 3a rapidly opened to populate open local minimum structures of slightly higher energy content that have the C-P and C-B vectors either anti-periplanarly oriented or arranged in a gauche conformation. According to this calculation it is the reactive gauche type structure that undergoes the cooperative H–H activation reaction to yield the hydridoborate/phosphonium product [118–125]. This reaction has enabled us to develop protocols for metal-free FLP catalyzed hydrogenation reactions.

What is remarkable about FLP chemistry is that many such pairs of Lewis acids and Lewis bases, that have been prevented from neutralizing adduct formation by steric bulk or electronically, exhibit reactions where they act jointly with added substrates. A number of these reactions (e.g., hydrogen activation) are thermodynamically cooperative, some showing great kinetic preference by favoring concerted pathways (e.g., CO₂ addition and potentially FLP addition to some alkenes and to nitric oxide). This behavior, especially prone for the intramolecular FLPs, indicates that the typical FLP situation, characterized by the simultaneous presence of reactive free Lewis base and Lewis acid components in solution, bears the potential to find novel reactions in a rather simple way. From the exciting results FLP chemistry has furnished in the early stages of its development we are hopeful that this specific situation of having active non-quenched Lewis acids and bases co-existent in solution will result in discovering more such new reaction modes. We feel that intramolecular FLPs may play an important role in this forthcoming development.

Acknowledgment G. E. thanks his co-workers at Münster for their great contributions to this exciting field. We cordially thank the collaborating groups. For all of us it has been a pleasure to work together and discover new FLP reactions and FLP behavior. G. E. thanks the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Alexander von Humboldt-Stiftung, and the European Research Council for financial support.

References

Frustrated Lewis Pairs I
Uncovering and Understanding
Erker, G.; Stephan, D.W. (Eds.)
2013, VIII, 350 p., Hardcover
ISBN: 978-3-642-36696-3