Contents

1 The Bladder as a Dynamic System ... 1
1.1 Anatomy of the Human Urinary Bladder 1
1.2 Detrusor Muscle ... 3
 1.2.1 Morphology of Smooth Muscle 3
 1.2.2 Electromechanical Activity of the Detrusor 4
 1.2.3 Pacemaker Activity .. 6
1.3 Neurohormonal Regulatory System 7
 1.3.1 Anatomical Considerations 7
 1.3.2 Neurotransmission .. 9
 1.3.3 Electrophysiological Characteristics of Neurons 12
1.4 Morphofunctional States in the Bladder 13
 1.4.1 Bladder Filling ... 13
 1.4.2 Bladder Voiding ... 14
References ... 16

2 Investigations into Biomechanics of the Bladder 25
2.1 Biomechanics of the Detrusor .. 25
2.2 Modeling of the Bladder ... 31
References ... 37

3 Geometry of Thin Shells ... 41
3.1 The Bladder as a Thin Biological Shell 41
3.2 Geometry of the Shell .. 42
3.3 Tensor of Affine Deformation 45
3.4 Equations of Continuity of Deformations 48
3.5 Equations of Equilibrium ... 50
References ... 52
4 Essentials of the Theory of Soft Shells
4.1 Deformation of the Shell
4.2 Principal Deformations
4.3 Membrane Forces
4.4 Principal Membrane Forces
4.5 Equations of Motion in General Curvilinear Coordinates
4.5.1 Remarks
4.6 Nets
4.7 Corollaries of the Fundamental Assumptions
Reference

5 Continual Model of the Detrusor
5.1 Basic Assumptions
5.2 Model Formulation
5.3 Biofactor Z_kl
5.4 Special Cases
References

6 A Model of the Detrusor Fasciculus
6.1 Formulation of the Model
6.2 Physiological Condition
6.3 Effects of Pharmacological and Extracellular Ion Changes on Electromechanical Activity of the Detrusor
6.3.1 Changes in K^+_0
6.3.2 L- and T-type Ca^{2+} Channel Antagonists
6.3.3 BK_{Ca} Channel Agonist/Antagonist
6.3.4 K^+ Channel Agonist/Antagonist
6.3.5 Ca^{2+}-ATPase Inhibitors
References

7 The Intrinsic Regulatory Pathways
7.1 Models of Electrical Activity of Neurons
7.2 A Model of Neuronal Assembly in the Bladder
7.3 Response of the Detrusor to Stretching
7.4 Pharmacology of the Neuronal Pathway
7.4.1 Effect of Iberiotoxin and Charybdotoxin
7.4.2 Effect of \omega-CgTX
7.4.3 Effect of TTX
7.4.4 Effect of Purinoceptor Agonists
7.4.5 Effect of Protein Kinase C Activator
References
Biomechanics of the Human Urinary Bladder
Miftahof, R.N.; Nam, H.G.
2013, XXI, 177 p. 43 illus., 10 illus. in color., Hardcover
ISBN: 978-3-642-36145-6