Contents

1 Excitons and Biexcitons in Semiconductors 1
 1.1 The Electronic Structure of Excitons 1
 1.2 Classification of the Exciton States 12
 1.3 Lenard–Dyson Theorem .. 14
 1.4 Effects of Exciton–Exciton Interaction 16
 1.5 Excitons Captured by Isoelectronic Impurities 23

2 Exciton Paramagnetic, Paraelectric, and Zero-Field Resonances 27
 2.1 Paramagnetic Resonance of Small-Radius Triplet Excitons 29
 2.2 Spin-Dependent Intraband Scattering of Triplet Wannier–Mott
 Excitons on Phonons .. 32
 2.3 Contribution of Hyperfine Interaction to Exciton Paramagnetic
 Resonance Linewidth .. 37
 2.4 Generation of Coherent Electromagnetic Radiation at Intra- and
 Interseries Exciton Transitions 40
 2.5 Generation of Coherent Magnons in Magnetic Semiconductors 47
 2.6 Exciton Paraelectric Resonance .. 53
 2.7 Isotopic Shift of Exciton Paraelectric Resonance in Cu2O Crystals 58

3 Exciton Acoustic Resonance .. 65
 3.1 The Effect of Lattice Vibrations and Free Carriers on Ultrasonic
 Attenuation in Crystals ... 66
 3.2 Resonant Absorption of Hypersound at Intraband Exciton
 Scattering on Phonons ... 69
 3.3 Resonant Absorption of Hypersound During Transitions Between
 Exciton Subbands ... 71
 3.4 Induced Instability in a System of Excitons and Strictly Resonant
 Hypersonic Phonons .. 77
 3.5 Phonon Maser on the Exciton Transitions 81
 3.6 Resonance Absorption of Hypersound by Biexcitons 85
4 Double Resonances .. 89
 4.1 Pikus–Luttinger Method of Invariants and Its Applications
to ENDOR and Acoustical ENDOR 90
 4.2 One-Phonon Spin–Lattice Relaxation and Acoustically
Nonequivalent Nuclei .. 105
 4.3 Localized Biexcitons in the Crystal GaP:N 110
 4.4 Exchange and Magnetic Dipole–Dipole Interaction Between
Holes in the Localized Biexciton 112
 4.5 Double Hole–Nuclear Resonance on Localized Biexcitons
in the Crystal GaP:N .. 117
 4.6 Double Radio–Optical Exciton Resonance 120

5 Investigation of Excitons by NMR Spectroscopy Methods 125
 5.1 Relaxation of Nuclear Spin via Triplet Excitons 125
 5.2 Exciton Knight Shift of NMR Lines 130
 5.3 NMR Evidence of Bose–Einstein Condensation of Excitons 132
 5.4 Relaxation of Nuclear Spin via Orthobiexcitons 135
 5.5 Partial Averaging of the Exciton–Exciton Interaction Under
Influence of Terasound .. 140

6 Interaction of Excitons with Paramagnetic Centers 147
 6.1 Spin Relaxation of Deep Centers in Semiconductors via Singlet
and Triplet Excitons ... 148
 6.2 Relaxation of Paramagnetic Centers via \(\Gamma_6 \otimes \Gamma_8 \otimes \Gamma_1 \) Excitons
in Cubic Crystals ... 151
 6.3 Shortening of Spin Relaxation Time of Paramagnetic Centers
due to Interaction with Excitons 154
 6.4 Indirect Interaction of the Paramagnetic Centers via Excitons ... 157
 6.5 The Effect of Giant Spin Splitting of the Exciton Band in Diluted
Magnetic Semiconductors ... 161
 6.6 Giant Magneto–Optical Effects in Diluted Magnetic
Semiconductors .. 163

7 Effects of Deep Saturation ... 171
 7.1 Unsteady States of Quantum Systems 172
 7.2 Unsteady States of Excitons at Interband Scattering
on High-Density Hypersonic Phonons 176
 7.3 Unsteady States of Excitons at Intraband Scattering
on High-Density Hypersonic Phonons 179
 7.4 Quasi-Energy Spectrum for a System with Equidistant Energy
Levels ... 181

8 Basics of Quantum Information Processing 187
 8.1 Information and Physics ... 188
 8.2 Quantum Information .. 190
 8.3 Quantum Bits ... 191
 8.4 The Network Model of Quantum Information Processing 193
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Quantum Gates for Single Qubits</td>
<td>194</td>
</tr>
<tr>
<td>8.6</td>
<td>Two-Qubit Operations</td>
<td>195</td>
</tr>
<tr>
<td>8.7</td>
<td>Robust Gate Operations</td>
<td>197</td>
</tr>
<tr>
<td>8.8</td>
<td>Initialization and Readout</td>
<td>198</td>
</tr>
<tr>
<td>8.9</td>
<td>Decoherence</td>
<td>198</td>
</tr>
<tr>
<td>8.10</td>
<td>Quantum Communication</td>
<td>199</td>
</tr>
<tr>
<td>8.11</td>
<td>Quantum Computing with Bose Operators</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>Test Systems for Quantum Information Processing</td>
<td>207</td>
</tr>
<tr>
<td>9.1</td>
<td>Requirements</td>
<td>207</td>
</tr>
<tr>
<td>9.2</td>
<td>Semiconductor Quantum Dots</td>
<td>209</td>
</tr>
<tr>
<td>9.3</td>
<td>The Diamond Nitrogen–Vacancy Center</td>
<td>211</td>
</tr>
<tr>
<td>9.4</td>
<td>^{31}P in Silicon</td>
<td>214</td>
</tr>
<tr>
<td>9.5</td>
<td>Endohedral Fullerenes</td>
<td>217</td>
</tr>
<tr>
<td>9.6</td>
<td>Rare-Earth Ions</td>
<td>219</td>
</tr>
<tr>
<td>9.7</td>
<td>Molecular Magnets</td>
<td>222</td>
</tr>
<tr>
<td>10</td>
<td>Conclusions</td>
<td>225</td>
</tr>
</tbody>
</table>

Appendix A Irreducible Tensor Operators $Y^L_M(\mathcal{I})$ | 227 |

Appendix B Matrix of Unitary Operator U Defined by Means of Basis Function Operators of the Irreducible Representations of the Symmetry Point Groups | 229 |

Appendix D Operators ξ and η | 237 |

Appendix E The Functions f_{kj} | 241 |

Appendix F The Wave Functions $\Phi^J_M(ll')$ | 245 |

Appendix G Integral $I(s,t)$ | 249 |

Appendix H Unitarity of the Spinor Operators and Two-Boson Representation of the Angular Momentum [527] | 251 |

Glossary | 255 |

References | 259 |

Index | 277 |
Resonance Effects of Excitons and Electrons
Basics and Applications
Geru, I.; Suter, D.
2013, XVII, 283 p. 36 illus., 14 illus. in color., Softcover
ISBN: 978-3-642-35806-7