Contents

1 **Synthesis of Elemental Boron and Its Refractory Compounds by Self-Propagating High-Temperature Synthesis with Metallothermic Reduction** 1
 1.1 Self-Propagating High-Temperature Synthesis 1
 1.2 Methods for Production of Boron 4
 1.3 Thermodynamic Analysis of Synthesis Reactions of Elemental Boron, Boron Carbide, and Boron Nitride 6
 1.4 SHS of Elemental Boron at Combustion in the KBF₄–Mg and KBF₄–Al Systems .. 17
 1.5 Properties of Boron Produced by SHS 21
 1.5.1 Structure of Boron ... 21
 1.5.2 Electron Microscopic Analysis of Synthesized Boron 24
 1.5.3 Thermal Analysis of Boron Powders 28
 1.6 SHS of Boron Carbide and Nitride 28
 1.6.1 SHS of Boron Carbide from KBF₄ 28
 1.6.2 SHS of Boron Nitride from KBF₄ 30
 1.7 Method for Production of Elemental Boron and Boron Carbide from KBF₄ .. 33
 1.8 Gradient Composite Material B₄C–Al₂O₃–Ni 36
 References .. 40

2 **Hard Titanium and Zirconium Boride Alloys and Items Manufactured from Them by SHS Compaction** 43
 2.1 Items Produced from Borides as an Alternative to Tungsten-Based Alloys ... 43
 2.2 Transition Metal Borides .. 45
 2.3 Structure of Powders .. 47
2.4 Effect of the Charge Particle Size on SHS 53
2.5 Reagents and Manufacturing Process for Production of Hard Alloys Based on Titanium and Zirconium Borides. 57
2.6 Pattern Formation of Final Combustion Product for the Zr–B and Ti–B Systems ... 59
2.7 Physical–Chemical and Mechanical Properties of Hard Alloys Based on Titanium and Zirconium Borides 63
 2.7.1 Bending Strength and Ultimate Compression Strength .. 63
 2.7.2 Hardness ... 64
 2.7.3 Thermal Stability .. 64
 2.7.4 Heat Resistance .. 66
 2.7.5 Corrosion Resistance .. 69
 2.7.6 Electroconductivity .. 70
 2.7.7 Thermal Conductivity ... 72
 2.7.8 Temperature Dependence of STIM-4 and TiB Thermal Expansion Coefficients 73
2.8 Laboratory and Factory Tests for Wear Resistance of Hard Alloys ... 75
References .. 78

3 Production and Analysis of TiB₂-Based Hard Alloys 83
 3.1 Choice of Particle Size for the Metal Binder Reagent 83
 3.2 Analysis of Final Products .. 85
 3.3 Physical–Mechanical Properties of TiB₂–Ti and TiB₂–St45 Hard Alloys ... 88
 3.3.1 Bending and Ultimate Compression Strength 88
 3.3.2 Hardness ... 90
 3.3.3 Wear Resistance .. 90
 3.3.4 Thermal Stability .. 91
 3.3.5 Heat Resistance .. 92
 3.3.6 Temperature Dependence of the Thermal Expansion Coefficient .. 94
 3.3.7 Factory Testing of TiB₂-Based Hard Alloy Parts 95
References .. 96

4 Macrokinetics of Degassing During SHS 99
 4.1 An Experimental Approach to the Study of Macrokinetics of Degassing .. 99
 4.2 Infiltration Characteristics of Sample 101
 4.3 Gas Evolution in the Ta–C and Ti–C Systems 103
 4.4 Locating the Source of Gas Evolution 104
 4.5 Effect of Degassing on Combustion Velocity 107
References ... 109
5 Macrokinetics of SHS Compaction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Characteristic Times of SHS Compaction</td>
<td>111</td>
</tr>
<tr>
<td>5.1.1 Hard Alloy Compaction Time</td>
<td>112</td>
</tr>
<tr>
<td>5.1.2 Hard Alloy Cooling Time</td>
<td>113</td>
</tr>
<tr>
<td>5.2 Effect of the Charge Size</td>
<td>114</td>
</tr>
<tr>
<td>5.3 SHS Compaction of Hard Alloy Consisting of Refractory Compounds</td>
<td>116</td>
</tr>
<tr>
<td>5.4 SHS Compaction of Hard Alloy Consisting of Refractory Compound and Metal Binder</td>
<td>118</td>
</tr>
</tbody>
</table>

References: 122

6 Use of SHS Compaction for Manufacture of Hard Alloy Parts with Metal Bands

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Band Fitting Procedure</td>
<td>123</td>
</tr>
<tr>
<td>6.2 Thermodynamic Estimates and Experimental Data on the Ti–B System Combustion Temperature</td>
<td>127</td>
</tr>
<tr>
<td>6.3 Calculation of the Reaction Mixture/Metal Band Weight Ratio</td>
<td>128</td>
</tr>
<tr>
<td>6.4 Calculation of the Geometry of the Hard Alloy–Metal Band System</td>
<td>130</td>
</tr>
<tr>
<td>6.5 Calculation of Stresses Taking Place in the “Hard Alloy–Metal Band” System</td>
<td>131</td>
</tr>
<tr>
<td>6.6 Factory Testing of Hard Alloy Parts with Metal Bands</td>
<td>134</td>
</tr>
</tbody>
</table>

References: 135

Index: 153
Production of Advanced Materials by Methods of Self-Propagating High-Temperature Synthesis
Tavadze, G.F.; Shteinberg, A.
2013, XIX, 156 p. 106 illus., Softcover
ISBN: 978-3-642-35204-1