Meso-Scale Modeling: The EMMS Model for Gas-Solid Systems

2.1 Background
- Designation
- Structural Characteristics
- Modeling Methodology

2.2 Formulation of the EMMS Model
- Multiscale Analysis
- Conservation Equations
- Stability Condition

2.3 Solution of the EMMS Model
- Analytical Solution of the Original EMMS Model
- Numerical Solution
- Critical Conditions for Choking
- Regime and Operation Diagram for Gas-Solid Systems

2.4 The EMMS Drag for CFD
- Deficiencies of Traditional Drag Models
- EMMS Drag

2.5 The Overall EMMS Model
- Radial EMMS Model
- Axial EMMS Model

2.6 Problems to be Solved

References

Verification of the EMMS Model with Pseudo-Particle Modeling

3.1 Pseudo-Particle Modeling
- Fundamentals and Formulation
- Boundary Conditions for Gas-Solid Flow

3.2 Simulation Setup and Analysis Methods

3.3 Verification of the EMMS Model with PPM

3.4 Scale-Dependence of the Stability Criterion

3.5 Stability at Different Density Ratios

References

Extension of the EMMS Model to Gas-Liquid Systems

4.1 Introduction

4.2 The DBS Model: An Extended EMMS Model for Gas-Liquid Systems
- Partition of Energy Dissipation
- Stability Condition
- Model Equations

References
4.3 Physical Understanding of Macro-Scale Phenomena
4.3.1 Jump Change and Regime Transition
4.3.2 Physical Essence of the Jump Change
4.3.3 Effects of Viscosity
4.3.4 Effects of Surface Tension
4.3.5 Regime Map
4.3.6 Comparison of DBS, TBS and MBS Models
4.4 Intrinsic Similarities Between Gas-Solid and Gas-Liquid Systems
4.5 EMMS-Based CFD Approach for Bubble Columns
4.5.1 Model Description
4.5.2 Simulation Settings
4.5.3 Effect of Bubble Diameter and Correction Factor
4.5.4 Simulation with the EMMS Drag
References
5 From EMMS Model to EMMS Paradigm
5.1 Universality
5.2 The EMMS Principle: From Individual to General
5.2.1 Extension to Gas/Liquid Flow
5.2.2 Extension to Turbulent Flow in Pipes
5.2.3 Extension to Foam Drainage
5.2.4 Extension to Emulsions
5.2.5 Extension to Granular Flow
5.3 Compromise: Possibly a Universal Law
5.4 The EMMS Paradigm
5.4.1 Universality in Physics
5.4.2 Universality in Mathematics
5.4.3 The Framework of the EMMS Paradigm
5.4.4 Three Modes of the EMMS Paradigm
5.4.5 Definition of the Top-Down Mode
5.4.6 Requirements for Hardware
References
6 Partial Realization of the EMMS Paradigm
6.1 EMMS-Based Multi-Fluid Model
6.1.1 Structure-Dependent Conservation Equations
6.1.2 Reduction to the TFM
6.1.3 Restoration to the EMMS Model
6.1.4 Simplified Solution with EMMS Drag
6.2 Simulation with EMMS Paradigm: Global Distribution

References
6.3 Simulation with EMMS Paradigm: Local Evolution

6.3.1 Determination of Meso-Scale Structure: The First Step

6.3.2 Determination of EMMS Drag: The Second Step

6.4 Applications of EMMS Paradigm

6.4.1 3D Full-Loop Simulation of a CFB

6.4.2 Flow Regime Diagram: Intrinsic Versus Apparent

6.5 Challenges of the TFM

6.5.1 Comparison of Periodic Domain Simulations

6.5.2 Direct Comparison: Simulations of Risers

6.6 Multiscale Mass Transfer

6.6.1 EMMS/Mass Model

6.6.2 Application to Reactive Flow Simulation

6.7 Further Development

6.7.1 EMMS/Bubbling Model

6.7.2 Realization of an Alternative EFM Model

6.7.3 MP-PIC with EMMS Drag

6.8 Summary

References

7 Complete Realization of the EMMS Paradigm

7.1 Structural Consistency

7.1.1 Phenomena

7.1.2 Physical Models

7.1.3 Simulation Methods

7.1.4 Hardware Architecture

7.2 Simulation at Micro-Scales with Discrete Methods

7.2.1 First-Principles Methods

7.2.2 Coarse-Grained Methods

7.2.3 Collective Methods

7.2.4 Interphase Interactions

7.2.5 General Algorithm

7.3 Developing Hardware with Current Technology

7.3.1 General Architecture

7.3.2 Hardware Development

7.3.3 Configuration

7.3.4 Performance

7.4 Implementation of the EMMS Paradigm

7.4.1 Global Distribution

7.4.2 Dynamic Structural Evolution in a Whole Reactor

7.4.3 Detailed Structural Evolution Down to Particle Scale

7.4.4 Evolution of Structures Below Particles
10.2.4 Hierarchy of CUDA Memory ... 384
10.2.5 Asynchronous Concurrent Execution 386
10.3 Application and Performance Guidelines 386
10.3.1 Programming and Optimization Techniques 386
10.3.2 Implementation of Applications on GPU 389
10.3.3 Coupled LBM and DEM for Large-Scale DNS 393
References ... 400

11 Software ... 403
11.1 Introduction ... 403
11.2 EMMS Software ... 404
11.3 FCC Online Simulator .. 406
11.4 GPU-MD: A MD Simulation Software Package with GPU Implementation ... 409
11.4.1 Introduction .. 409
11.4.2 Model ... 412
11.4.3 GPU-Based Algorithms ... 413
11.4.4 Implementation ... 414
11.4.5 Usage of GPU-MD .. 416
11.4.6 Example: Crystallization Simulation of a PE System 418
11.5 Granular Flow DEM Simulation Software 419
11.5.1 Introduction .. 419
11.5.2 Usage of DEMMS ... 420
11.5.3 Example: Simulation of a Rotary Kiln 422
11.6 In Situ Particle Visualization Software: ParticleEye 422
11.6.1 Introduction .. 422
11.6.2 Usage ... 423
11.6.3 Example: Visualization for GPU-Based DEM Simulation of a Rotating Drum ... 425
11.7 Summary ... 427
References ... 427

12 Experimental Characterization of Meso-Scale Processes 431
12.1 Fluid Dynamics .. 433
12.1.1 Characteristics of Meso-Scale Processes 433
12.1.2 Particle Clustering Dynamics 439
12.2 Mass Transfer .. 446
12.2.1 Mass Transfer from Static Particle Clusters 446
12.2.2 Mass Transfer from Dynamic Particle Clusters 450
12.3 Gas Backmixing in High-Velocity Fluidization 454
12.4 Virtual Process Engineering Platform 456
References ... 459
From Multiscale Modeling to Meso-Science
A Chemical Engineering Perspective
Li, J.; Ge, W.; Wang, W.; Yang, N.; Liu, X.; Wang, L.; He, X.; Wang, X.; Wang, J.; Kwauk, M.
2013, XXVI, 484 p., Hardcover
ISBN: 978-3-642-35188-4