Contents

1 Superconductors and Superconductivity: General Issues 1
1.1 Superconductivity Discovery 1
1.2 Progress and Prognosis of Superconductivity Applications 5
1.2.1 Technical Directions 8
1.2.2 Electronics 9
1.2.3 Transportation 15
1.2.4 Medicine 18
1.2.5 Mechanical Systems 19
1.2.6 Scientific Research 20
1.2.7 Electric Power 25
1.3 Superconductivity Phenomena 30
1.3.1 Critical Field 30
1.3.2 Critical Current 31
1.3.3 The Meissner Effect 32
1.3.4 Equipotential Lines for Superconductive Inclusion 35
1.3.5 The Cooper Effect 36
1.3.6 The Isotope Effect 38
1.3.7 Penetration Depth and Coherence Length 38
1.3.8 Weak Superconductivity and the Josephson Effects 40
1.4 Type-I Superconductors 43
1.4.1 Magnetic Properties of Type-I Superconductors 43
1.4.2 The Intermediate State 45
1.4.3 Intermediate State and Scaling Laws 47
1.5 Type-II Superconductors 49
1.6 Theories of Superconductivity 50
1.7 Connection of Superconductivity with Other Physical Researches
1.7.1 Development of Common Research Methods of Superconductivity, Condensed Matter Physics, Electromagnetism and Gravitation
1.7.2 Spontaneous Symmetry Breaking or on Connection Between Superconductivity and Elementary Particle Physics
1.7.3 Field Theory and Study of Superconducting Phase Transition
1.7.4 Optical Conductivity and Spatial Heterogeneity of HTSC
1.7.5 Analogy Between Superconducting Current and Laser

2 High-Temperature Superconductors. Overview
2.1 General Remarks on Type-II Superconductors
2.2 High-Temperature Superconductive Cuprates
2.2.1 Doping of Cuprates
2.2.2 Anderson Phase Diagram of Cuprate Superconductivity
2.2.3 Influence of High Pressure on Superconductivity
2.2.4 Specific-Heat Anomaly at Temperature of Superconducting Transition in HTSC
2.2.5 Coherence Length and HTSC Anisotropy
2.2.6 Vortex Structure of HTSC and Magnetic Flux Pinning
2.2.7 Interactions of Vortices with Pinning Centers
2.2.8 Future Studies of Vortex State
2.2.9 Energy Gap Properties of Superconductors
2.3 High-Temperature Superconductive Oxypnictides
2.4 Future Studies of High-Temperature Superconductivity Mechanism
2.5 Weak Links and Josephson Junctions
2.5.1 Classification of Josephson Junctions
2.5.2 Tunneling Junctions Based on High-Temperature Superconductors

3 Composition Features and HTSC Preparation Techniques
3.1 YBCO Films and Coated Conductors
3.2 BSCCO Films, Tapes and Wires
3.3 Films and Wires, Based on Thallium and Mercurial Cuprates
3.4 BSCCO Bulks
3.5 Y(RE)BCO Bulks .. 160
3.6 Superconductive Pnictides 168

4 Experimental Investigations of HTSC 171
4.1 Experimental Methods of HTSC Investigations 171
4.1.1 Special Techniques 171
4.1.2 ARPES ... 176
4.1.3 Measuring Methods of Mechanical and Strength Properties 179
4.1.4 Acoustic Emission Method 184
4.1.5 Optical Interferometry 192
4.2 Intergranular Boundaries in HTSC 199
4.3 Superconducting Composites, Based on BSCCO 211
4.3.1 BSCCO/Ag Tapes 211
4.3.2 Irreversibility Lines for BSCCO 224
4.3.3 BSCCO Bulks 226
4.4 Melt-Processed Y(RE)BCO 239
4.4.1 Microstructure Features 239
4.4.2 Growth Processes in Seeded Sample 242
4.4.3 Behavior of 211(422) Disperse Phase 246
4.4.4 Effects of Doping Additives 254
4.4.5 Mechanical Loading Effects 261
4.4.6 Mechanical and Strength Properties 263

5 Carbon Problem .. 273
5.1 YBCO System .. 273
5.2 BSCCO Systems 282
5.3 Carbon Embrittlement and Fracture of YBCO Superconductor 285
5.3.1 Mathematical Model for Carbonate Precipitation and Fracture 286
5.3.2 Discussion of Results 294
5.4 Modeling of Carbon Segregation and Fracture Processes of HTSC 296
5.4.1 Equilibrium Slow and Fast Crack Growth 297
5.4.2 Steady-State Crack Growth 300
5.4.3 Some Numerical Results 303

6 General Aspects of HTSC Modeling 307
6.1 Yield Criteria and Flow Rules for HTSC Powders Compaction 309
6.1.1 HTSC Compaction and Yield Criterion 310
6.1.2 Non-Associated Plasticity of HTSC Powders 312
6.2 Void Transformations during Sintering of Sample 318
 6.2.1 Void Separation from Intergranular Boundary 320
 6.2.2 Size Trajectories in the Pore/Grain Boundary System During Sintering 327
 6.2.3 Estimation of Pore Separation Effects for HTSC ... 335
6.3 Modeling Epitaxial Growth of Thin Films 337
 6.3.1 Sharp Interface Formulation 338
 6.3.2 Epitaxial Growth Involving Elasticity 345
6.4 HTSC Microstructure Formation During Sintering 348
6.5 Microcracking of Intergranular Boundaries at Sample Cooling .. 352
6.6 Study of Statistical Properties of the Model Structures ... 355
6.7 Modeling of Macrocracks 358

7 Modeling of BSCCO Systems and Composites 365
7.1 Transformation of Bi-2212 to Bi-2223 Phase 365
 7.1.1 Edge Dislocations as Channels for Fast Ion Diffusion ... 366
 7.1.2 The Layer-Rigidity Model 367
 7.1.3 Dynamics of Bi-2223 Phase Growth 371
 7.1.4 Formation Energy of Bi-2223 Phase 374
 7.1.5 Effect of Deformation on Bi-2212/Bi-2223 Transformation .. 376
7.2 Modeling of Preparation Processes for BSCCO/Ag Tapes ... 379
 7.2.1 Sample Texturing by External Magnetic Field 379
 7.2.2 Deformation at Tape Cooling 381
 7.2.3 Effects of Mechanical Loading 382
 7.2.4 Mathematical Modeling of Cold Drawing of Filamentary Composites 388
 7.2.5 Mathematical Modeling of Cold Rolling 397
 7.2.6 Finite-Element Modeling of Deformation Processes ... 401

8 Modeling of YBCO Oxide Superconductors 407
8.1 Modeling of 123 Phase Solidification from Liquid 407
 8.1.1 Heterogeneous Mechanism 407
 8.1.2 Models Based on Yttrium Diffusion in Liquid 407
 8.1.3 Models Based on Interface Phenomena 414
 8.1.4 Models of Platelets-Like Growth of 123 Phase 420
 8.1.5 Modeling of Solidification Kinetics 427
 8.1.6 Multi-phase Field Method 430
8.2 Stress–Strain State of HTSC in Applied Magnetic Fields ... 435
9 Modeling Conductive and Elastic Properties of Superconductive Composites

9.1 Effective Conductivity of Superconductive Composites

9.1.1 Two-Phase Composites with Phase-Interchange Properties

9.1.2 Conductivity of Composites with Periodic Arrays of Superconductive Inclusions

9.1.3 Effective Medium Approximation for Definition of Effective Conductivity of Superconductive Composite

9.1.4 Cluster Expansions

9.1.5 Strong Contrast Expansions

9.1.6 Strong Bound Estimations

9.1.7 Improved Estimations of Range Bounds for Effective Conductivity of Superconductive Composites

9.2 Effective Elasticity of Superconductive Composites

9.2.1 Effective Medium Approximations for Definition of Effective Elastic Moduli

9.2.2 Strong Bound Estimations for Elastic Properties

9.3 Couples Between Conductivity and Elastic Properties

9.4 Asymptotical Methods for Definition of Properties of Superconductive Composites

9.4.1 Conductivity of Filamentary Composites

9.4.2 Conductivity of Granular Composites

9.4.3 Effective Elastic Properties of Composites

10 Computer Simulation of HTSC Microstructure and Toughening Mechanisms

10.1 YBCO Ceramic Sintering and Fracture

10.1.1 Sintering Model of Superconducting Ceramic

10.1.2 Ceramic Cracking During Cooling

10.1.3 Formation of Microcracks around 211 Particles in 123 Matrix

10.1.4 Fracture Features at External Loading

10.1.5 Crack Tip Shielding Introduced its Geometry

10.1.6 Microcracking Process Zone Near Macrocrack

10.1.7 Crack Branching

10.1.8 Crack Bridging

10.1.9 Some Numerical Results

10.2 Crack Shielding Processes in Ferroelastics and Ferroelectrics

10.2.1 Ferroelastics and Ferroelectrics with Effect of Negative Stiffness of Components
10.2.2 Fracture Features in Domain Structure of Ferroelectric .. 525
10.2.3 Domain Structure and Fracture of Ferroelectric Ceramic ... 529
10.2.4 Influence of Domain Switching Near the Crack on Fracture Toughness 532
10.2.5 Thermodynamics of Martensitic Transformation in HTSC ... 536
10.2.6 About Toughening of Superconducting Ceramics ... 539

10.3 Toughening Mechanisms for Large-Grain YBCO ... 542
10.3.1 Model Representations ... 542
10.3.2 Effect of 211 Particles on YBCO Fracture .. 544
10.3.3 Some Numerical Results ... 549

10.4 Fatigue Fracture .. 549
10.4.1 Nucleation and Growth Mechanisms of Short Cracks ... 550
10.4.2 Crack Closure Mechanisms ... 552

10.5 Small Cyclic Fatigue of YBCO Ceramics ... 553
10.5.1 Model Representations ... 553
10.5.2 Microstructure Dissimilitude Effect ... 554
10.5.3 Fracture Energy and Microstructure Features ... 557
10.5.4 Some Numerical Results ... 560

10.6 Residual Thermal Stresses in YBCO/Ag Composite .. 560

10.7 Toughening of Bi-2223 Bulk, Fabricated by Hot-Pressing Method 562
10.7.1 Microstructure Formation by Processing .. 562
10.7.2 Bi-2223 Toughening by Silver Dispersion .. 566

11 Mechanical Destructs of HTSC Josephson Junctions and Composites 569
11.1 Interface Fracture ... 570
11.2 Thin Films on Substrates .. 574
11.3 Step-Edge Junctions .. 578
11.4 Transverse Fracture .. 581
11.5 HTSC Systems of S–N–S Type ... 585
11.6 Toughening Mechanisms .. 587
11.7 Charts of Material Properties and Fracture .. 589
11.8 Concluding Remarks .. 593

12 Modeling of Electromagnetic and Superconducting Properties of HTSC 595
12.1 Modeling of Intercrystalline Dislocations .. 595
12.2 Current-Limiting Mechanisms and Grain Boundary Pinning ... 600
12.3 Vortex Structures and Current Lines in HTSC with Defects 602
12.4 Non-Linear Current in Superconductors with Obstacles 608
12.5 Double Critical-State Model for Type-II Superconductors ... 616
12.6 Current Percolation and Pinning of Magnetic Flux in HTSC 618
12.6.1 Model of Non-Linear Resistor Network 620
12.6.2 Simulation of Current Percolation and Magnetic Flux in YBCO Coated Conductors 628
12.6.3 Modeling of Electromagnetic Properties of BSCCO/Ag Tapes .. 631
12.6.4 Aging at Mechanical Loading 635
12.6.5 Effective Electrical Conductivity of Superconducting Oxide Systems 638

Appendix A: Classification of Superconductors 645

Appendix B: Implementation of Carbon-Induced Embrittlement Model .. 677

Appendix C: Macrostructure Modeling of Heat Conduction 683

Appendix D: Computational Algorithms for Definition of Structure-Sensitive Properties of Some HTSC Ceramics and Composites 699

Appendix E: Eden Model ... 709

References .. 713

Index ... 763
Microstructure and Properties of High-Temperature Superconductors
Parinov, I.
2012, XXI, 779 p., Hardcover
ISBN: 978-3-642-34440-4