Contents

1 Introduction .. 1
 1.1 Introduction 1
 1.2 Hot Research Topics 3
 1.3 Outline of the Book 4
 References ... 4

2 Recent Advances 7
 2.1 Introduction 7
 2.2 Waves Propagating over a Porous Seabed: Theoretical Models
 (Transient Mechanism) 7
 2.2.1 Un-coupled Models (or Drained Models) 8
 2.2.2 Biot’s Consolidation Model (Quasi-Static Model) .. 10
 2.2.3 u–p Approximation 15
 2.2.4 Dynamic Models 16
 2.2.5 Poro-Elastoplastic Models 16
 2.3 Waves Propagating over a Porous Seabed: Theoretical Model
 (Residual Mechanism) 17
 2.4 Waves Propagating over a Porous Seabed: Physical Modeling ... 18
 2.4.1 Field Measurements 18
 2.4.2 Laboratory Experiments 19
 2.5 Waves Propagating over a Porous Seabed: Wave Damping
 and Seepage Flux 21
 2.5.1 Wave Damping in a Porous Seabed 21
 2.5.2 Wave-Driven Seepage Flux in Sediments 22
 2.6 Wave-Induced Seabed Instability 22
 2.6.1 Shear Failure 23
 2.6.2 Liquefaction 24
 References ... 27

3 Wave-Induced Soil Response in an Isotropic Seabed 33
 3.1 Introduction 33
 3.2 A Short-Crested Wave System 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Boundary Value Problem</td>
<td>36</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Governing Equations</td>
<td>36</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Boundary Conditions</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>General Solutions</td>
<td>40</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Basic Theoretical Framework</td>
<td>40</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Soil Response in a Seabed of Infinite Thickness</td>
<td>42</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Soil Response in a Porous Seabed of Finite Thickness</td>
<td>44</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Soil Response in a Layered Seabed</td>
<td>46</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Limiting Two-Dimensional Conditions</td>
<td>48</td>
</tr>
<tr>
<td>3.4.6</td>
<td>A Special Case: Fully Saturated Isotropic Seabed of Infinite Thickness</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Verification</td>
<td>52</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Comparison with Two-Dimensional Experimental Data</td>
<td>52</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Comparison with Two-Dimensional Analytical Solutions</td>
<td>54</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Comparison with Numerical Model [18, 40, 41]</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Results and Discussion</td>
<td>60</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Effect of Wave Characteristics</td>
<td>60</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Effect of Soil Characteristics</td>
<td>62</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Effect of a Combined Obliquity-Permeability Parameter</td>
<td>69</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Effect of a Top Layer</td>
<td>70</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary</td>
<td>72</td>
</tr>
<tr>
<td>3.8</td>
<td>List of Coefficients B_i and C_i</td>
<td>73</td>
</tr>
<tr>
<td>References</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wave-Induced Seabed Instability</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Shear Failure</td>
<td>80</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Principal Stresses</td>
<td>80</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Mohr-Coulomb’s Criterion</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Soil Liquefaction</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Excess Pore Pressure</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Criteria of Liquefaction</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Seepage Force</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>Wave-Induced Seabed Instability</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Effect of Wave Characteristics</td>
<td>90</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Effect of Soil Characteristics</td>
<td>95</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Effect of Combined Obliquity-Permeability Parameter</td>
<td>98</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Temporal Variation in Wave-Induced Liquefaction</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>Seabed Protection</td>
<td>99</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Effects of a Top Layer</td>
<td>100</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Methodology of Seabed Protection</td>
<td>103</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
<td>107</td>
</tr>
<tr>
<td>References</td>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>
5 Wave-Induced Seabed Response in Non-homogeneous Anisotropic Seabed

5.1 Introduction ... 109
5.2 Analytical Solution for a Seabed with Variable Permeability 111
 5.2.1 Boundary Value Problem 111
 5.2.2 General Solutions .. 112
 5.2.3 Results and Discussion 119
 5.2.4 Summary ... 128
5.3 Analytical Solution for a Cross-Anisotropic Seabed 128
 5.3.1 Cross-Anisotropic Soil 128
 5.3.2 Boundary Value Problem 130
 5.3.3 General Solutions .. 131
 5.3.4 Results and Discussion 139
 5.3.5 Effect of Anisotropic Constant A 149
 5.3.6 Effect of the Degree of Saturation 150
 5.3.7 Summary ... 151
5.4 Numerical Model for Seabed Response in Anisotropic Seabed with Variable Soil Characteristics .. 151
 5.4.1 Boundary Value Problem 153
 5.4.2 Wave-Induced Seabed Response 154
 5.4.3 Wave-Induced Liquefaction 161
 5.4.4 Summary ... 164
5.5 Appendix: Exact Solutions of Linear Variable Coefficient Equations 164
5.6 Appendix: Finite Element Formulations 167
References ... 169

6 Dynamic Analysis for Wave-seabed Interaction 173
6.1 Introduction ... 173
6.2 Boundary Value Problem .. 174
 6.2.1 Basic Ocean Wave Theory 174
 6.2.2 Governing Equations 174
 6.2.3 Boundary Conditions 175
6.3 General Solutions .. 176
 6.3.1 Basic Framework ... 176
 6.3.2 A Seabed of Finite Thickness 181
 6.3.3 A Seabed of Infinite Thickness 183
6.4 Simplified Solution .. 184
 6.4.1 \(u-p \) Approximation 184
 6.4.2 Quasi-Static Approximation 186
6.5 Numerical Results and Discussions 187
 6.5.1 Effects of Dynamic Soil Behavior 187
 6.5.2 Effects of Soil Characteristics 188
 6.5.3 Effects of Wave Characteristics 193
6.6 When Should Dynamic Soil Behavior Be Considered? 197
References ... 199
7 Wave Propagation over Coulomb-Damped Seabed

7.1 Introduction
7.2 Coulomb-Damping Poro-Elastic Seabed
7.3 Boundary Value Problem
 7.3.1 Governing Equations
 7.3.2 Boundary Condition
7.4 General Solutions
 7.4.1 Analytical Solution for a Seabed of Finite Thickness
 7.4.2 Analytical Solution for an Infinite Seabed
 7.4.3 Verification
7.5 Results and Discussions
 7.5.1 Effects of Coulomb-Damping Friction and Fluid Acceleration
 7.5.2 Response of Seabed to Ocean Waves
7.6 Summary
7.7 Appendix: List of Coefficients a_1–a_6

References

8 Random Wave-Induced Seabed Response

8.1 Introduction
8.2 Random Waves
 8.2.1 Random Wave Generation
 8.2.2 Random Wave Simulation
 8.2.3 Random Wave Validation
 8.2.4 Statistic Features of the Simulated Random Waves
 8.2.5 Representative Regular Wave
8.3 Wave-Induced Oscillatory Soil Response
 8.3.1 Boundary Value Problem
 8.3.2 Analytical Solutions
8.4 Numerical Results
 8.4.1 Comparison Between Regular and Random Wave-Induced Soil Responses
 8.4.2 Effect of Soil Parameters on Random Wave-Induced Soil Response
 8.4.3 Effect of Wave Characteristics on Random Wave-Induced Soil Response
 8.4.4 Effect of Seabed Thickness on Random Wave-Induced Soil Response
8.5 Summary

References

9 Wave-Induced Pore Pressure Accumulation in Marine Sediments

9.1 Introduction
9.2 Boundary Value Problem
9.3 Source Term
 9.3.1 Nonlinear Mechanism of Pore Pressure Generation
 9.3.2 Linear Mechanism of Pore Pressure Generation

References
9.4 Theoretical Models .. 256
 9.4.1 Analytical Approximation for Linear Mechanism 256
 9.4.2 Numerical Scheme 258
 9.4.3 Comparisons .. 258
9.5 Parametric Study ... 260
9.6 A Simplified Approximation for an Infinite Seabed 262
 9.6.1 Scaling Analysis 262
 9.6.2 A Simplified Approximation for Wave-Induced
 Liquefaction ... 265
9.7 Summary .. 266
9.8 Appendix: Mathematical Derivation of Analytical Solutions ... 267
 9.8.1 Finite Soil Model 268
 9.8.2 Shallow Soil Model 268
 9.8.3 Deep Soil Model 268
References .. 270

10 Wave-Induced Progressive Liquefaction in a Porous Seabed 271
 10.1 Introduction .. 271
 10.2 Two-Layered Fluid System 272
 10.2.1 Two-Layered Inviscid Fluid Model 273
 10.2.2 Two-Layered Viscid Fluid Model 273
 10.3 Poro-Elastoplastic Soil Model 276
 10.3.1 Boundary Value Problem 276
 10.3.2 Cyclic Shear Stress in an Infinite Seabed 277
 10.3.3 Cyclic Shear Stress in a Seabed of Finite Thickness ... 278
 10.3.4 Numerical Scheme and Procedure 279
 10.4 Results and Discussions 280
 10.4.1 Comparison with Sassa’s Model [6] 281
 10.4.2 Viscous Effect and the Influence of Shear Stress ... 283
 10.4.3 Effect of Parameters α, β and R in the Build-Up Pattern ... 284
 10.4.4 Effect of Wave and Soil Characteristics 286
 10.4.5 Pore Pressure History 287
 10.5 Summary .. 288
References .. 288

Index ... 289
Porous Models for Wave-seabed Interactions
Jeng, D.-S.
2013, XIV, 290 p., Hardcover
ISBN: 978-3-642-33592-1