Contents

1 **Introduction** ... 1
 1.1 Motivation ... 3
 1.2 Categorization of the Considered Problem 7
 1.3 Aims and Contributions of the Book 9
 1.3.1 Central Research Questions to Be Answered in This Book . 9
 1.3.2 Contributions of This Book 9
 1.4 Outline of the Book .. 13

2 **Introduction to Tour Planning: Vehicle Routing and Related Problems** 15
 2.1 General Task and Definitions 16
 2.2 Representation of Requests and General Types of Routing Problems 18
 2.3 Node-Based Routing Problems 18
 2.3.1 The Traveling Salesman Problem (TSP) 19
 2.3.2 The Vehicle Routing Problem (VRP and CVRP) 20
 2.3.3 The General Pickup and Delivery Problem (GPDP) and Related Variants ... 22
 2.3.4 Complexity of Node-Based Routing Problems 25
 2.3.5 Solution Methods for Node-Based Routing Problems 27
 2.4 Extensions to the Vehicle Routing Problem 32
 2.4.1 Time Windows .. 32
 2.4.2 Backhauls .. 33
 2.4.3 Simultaneous Pickup and Delivery 33
 2.4.4 Multi-Depot Problems 33
 2.4.5 Open Routing Problems 34
 2.4.6 Vehicle Scheduling .. 34
 2.4.7 Multiple Compartments 34
 2.4.8 Multiple Trips .. 34
 2.4.9 Time-Dependent Travel Times 35
 2.4.10 Legal Driving Time Regulations 35
 2.4.11 Heterogeneous Fleet 35
 2.4.12 Objective Functions in Vehicle Routing Problems 36
2.5 Information Revelation in Routing Problems 38
 2.5.1 Revelation of Relevant Information in Vehicle Routing Problems 39
 2.5.2 Approaches in the Literature for Characterizing Relevant Information and Distinguishing Between Static and Dynamic Routing Problems 40
 2.5.3 A Unified Approach for Classifying Routing Problems with Regard to Characteristics and Processing of Relevant Information 47

2.6 Dynamic Routing Problems Which Utilize a Centralized Coordination 58
 2.6.1 Typical Objectives in Dynamic Routing Problems 59
 2.6.2 Dynamic Events in Dynamic Routing Problems 59
 2.6.3 Technologies Utilized in Real-Time Control Approaches 60
 2.6.4 The Degree of Dynamism 64
 2.6.5 Three-Echelon Classification of Dynamic Routing Problems 68
 2.6.6 Evaluating the Performance of Solution Approaches for Dynamic Routing Problems 73

2.7 A General Classification Scheme for Routing Problems 74

2.8 Summary 79

3 The Considered RDOPG Applications 81
 3.1 Problem Description of RDOPG Applications 81
 3.1.1 Existence of a Real Urban Road Network 83
 3.1.2 Presence of Vehicle On-Board Units and a Central Dispatching Center 83
 3.1.3 Availability and Utilization of Past Request Information 83
 3.1.4 Allowing Vehicle En-Route Diversion 84
 3.1.5 Integration of Vehicle Scheduling Decisions 84
 3.2 Characteristics of RDOPG Applications 85
 3.2.1 Differences from Other Dynamic Routing Problems 85
 3.2.2 Computational Complexity 86
 3.2.3 Classifying RDOPG Applications with Regard to Characteristics and Processing of Relevant Information 86
 3.2.4 General Classification of RDOPG Applications 87
 3.3 Summary 87

4 Review of the Literature Related to the Considered RDOPG Applications 93
 4.1 First Papers on Dynamic Routing Problems in the Literature 94
 4.2 Selected Reactive Real-Time Control Approaches for Dynamic Routing Problems 95
 4.3 Strategies for Increasing Flexibility in Dynamic Routing Problems 97
 4.3.1 Waiting Strategies 97
 4.3.2 Relocation Strategies 99
 4.3.3 Request Assignment Strategies 100
4.4 Flexibility in Dynamic Routing Without Stochastic Knowledge ... 101
4.5 Flexibility in Dynamic Routing Using Stochastic Knowledge ... 108
 4.5.1 Strategy-Oriented Approaches ... 109
 4.5.2 Approaches Using Exact Solution Methods ... 118
 4.5.3 Stochastic Modeling Based Approaches ... 119
 4.5.4 Approaches with Manually Provided Stochastic Knowledge ... 126
 4.5.5 Sampling-Based Approaches ... 128
4.6 Related Objective Functions ... 137
4.7 Other Relevant Factors for RDOPG Applications ... 140
 4.7.1 En-Route Diversion of Vehicles ... 140
 4.7.2 Road Network ... 141
 4.7.3 Simulator ... 141
 4.7.4 Real-Time Control ... 142
 4.7.5 City Logistics-Related Decision Support Systems and Communication Technologies ... 144
4.8 Conclusion of the Literature Review ... 145

5 A New Deterministic Real-Time Control Approach for RDOPG Applications ... 149
 5.1 General Categorization of Different Control Concepts in Logistic and Production Systems ... 149
 5.2 The Deterministic Real-Time Control Approach ... 151
 5.2.1 The Applied Real-Time Control Concept ... 151
 5.2.2 Update Handling ... 153
 5.2.3 Vehicle Scheduling Strategy ... 156
 5.2.4 Idle Vehicle Waiting Strategy ... 156
 5.3 The Mathematical Model of Individual Problem Instances ... 156
 5.3.1 Road Network and the Derived Digraph ... 156
 5.3.2 The Deterministic Dynamic Mathematical Model ... 158
 5.4 Characterization of the Deterministic Real-Time Control Approach ... 163
 5.5 Utilization of the Real-Time Control Approach in RDOPG Applications ... 164
 5.6 Summary ... 165

6 A New Forecasting Approach for Generating Stochastic Knowledge from Past Request Information and Utilizing the Stochastic Knowledge ... 167
 6.1 Integrating Stochastic Knowledge into the Proposed Real-Time Control Approach ... 169
 6.2 Generation of Dummy Customers Using Segment-Based Clustering ... 171
 6.2.1 Segment-Based Cluster Generation ... 172
 6.2.2 Cluster Selection and Dummy Customer Generation ... 178
 6.3 Handling Dummy Customers in the Pro-Active Real-Time Control Approach ... 179
 6.3.1 Dynamic Parameter Updating During the Transportation Process ... 179
6.3.2 Extended Vehicle Scheduling Strategy with Regard to Dummy Customers .. 182
6.3.3 Extended Vehicle Waiting Strategy Using Dummy Customer Information 182
6.4 Summary .. 183

7 The Proposed Tabu Search Solution Method ... 185
7.1 General Concepts of the Implemented Solution Method ... 186
 7.1.1 The Tabu Search Metaheuristic .. 186
 7.1.2 Description of an Iteration in the Solution Method .. 187
 7.1.3 Representation of a Tour Plan in the Solution Method .. 189
 7.1.4 Efficient Calculation of Changes in the Objective Function Value 190
7.2 Neighborhood Operators ... 190
 7.2.1 Within Tour Insertion (WTI) .. 191
 7.2.2 Relocate (REL) .. 192
 7.2.3 MultiRelocate (MREL) ... 194
 7.2.4 Large Neighborhood Search (LNS) ... 194
 7.2.5 Exchange Between Tours (XBT) .. 195
7.3 The Implemented Tabu List ... 196
7.4 Construction of the Initial Tour Plan .. 198
7.5 Stage-Based Neighborhood Operator Selection Scheme .. 199
7.6 Integration of the Solution Method into the Real-Time Control Approaches 200
7.7 Summary .. 200

8 Computational Results .. 203
8.1 The Discrete Event-Based Simulator .. 205
 8.1.1 Simulation of the Requests ... 207
 8.1.2 Simulation of the Vehicles .. 207
8.2 Test Environment, Parameter Values, and Request Data Classes 208
 8.2.1 System Environment and Real-Time Control Parameter Values 208
 8.2.2 Tabu Search Solution Method Parameter Values .. 209
 8.2.3 Dummy Customer Request Parameter Values .. 210
 8.2.4 Request Parameter Values and Request Data Classes .. 210
 8.2.5 Number of Conducted Computational Experiments ... 216
 8.2.6 Performance Evaluation Using the Additionally Attainable Improvement 217
8.3 Performance of the Tabu Search Solution Method .. 218
8.4 Performance Evaluation of Deterministic Real-Time Control Approaches 220
8.5 Performance Evaluation of Allowing Vehicle En-Route Diversion 224
8.6 Measuring Structural Distortion Using the Goodness-of-Fit Test 226
8.7 Results of Generating Stochastic Knowledge for S_{REAL} and S_{GEN} 231
Pro-active Dynamic Vehicle Routing
Real-Time Control and Request-Forecasting Approaches to Improve Customer Service
Ferrucci, F.
2013, LII, 319 p., Hardcover
ISBN: 978-3-642-33471-9
A product of Physica-Verlag Heidelberg