Part I General Aspects of Bioenergetics

1 Introduction ... 3
 1.1 Definition of the Term “Bioenergetics” and Some
 Milestones of its History ... 3
 1.2 Bioenergetics in the System of Biological Sciences 5
 1.3 Laws of Bioenergetics .. 9
 1.4 Evolution of Bioenergetic Mechanisms 13
 1.4.1 Adenosine Triphosphate 14
 1.4.2 Hypothesis of Adenine-Based Photosynthesis 15
 1.4.3 Reserve Energy Sources and Glycolysis 19
 1.4.4 Proton Channels and H⁺-ATPase as Means
 to Prevent Glycolysis-Induced Acidification
 of the Cell ... 21
 1.4.5 Bacteriorhodopsin-Based Photosynthesis
 as the Primordial Mechanism of Visible
 Light Energy Transduction 22
 1.4.6 Chlorophyll-Based Photosynthesis 23
 1.4.7 Respiratory Mechanism of Energy Supply 25
 References .. 27

Part II Generators of Proton Potential

2 Chlorophyll-Based Generators of Proton Potential 31
 2.1 Light-Dependent Cyclic Redox Chain of Purple Bacteria 32
 2.1.1 Main Components of Redox Chain and Principle
 of Their Functioning ... 33
 2.1.2 Reaction Center Complex 36
 2.1.3 CoQH₂: Cytochrome c-Oxidoreductase 49
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4</td>
<td>Ways to Use $\Delta\mu_{H+}$ Generated by the Cyclic Photoredox Chain</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>Noncyclic Photoredox Chain of Green Bacteria</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>Noncyclic Photoredox Chain of Chloroplasts and Cyanobacteria</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Principle of Functioning</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Photosystem 1</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Photosystem 2</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Cytochrome b_{6f} Complex</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Fate of $\Delta\mu_{H+}$ Generated by the Chloroplast</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Photosynthetic Redox Chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>Organotrophic Energetics</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>3.1 Substrates of Organotrophic Energetics</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>3.2 Short Review of Carbohydrate Metabolism</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>3.3 Mechanism of Substrate Phosphorylation</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>3.4 Energetic Efficiency of Fermentation</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>3.5 Carnosine</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>The Respiratory Chain</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>4.1 Principle of Functioning</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>4.2 NADH:CoQ-Oxidoreductase (Complex I)</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Protein Composition of Complex I</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>4.2.2 Cofactor Composition of Complex I</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>4.2.3 Subfragments of Complex I</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>4.2.4 Inhibitors of Complex I</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>4.2.5 Possible Mechanisms of $\Delta\mu_{H+}$ Generation by Complex I</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>4.3 CoQH$_2$:Cytochrome c-Oxidoreductase (Complex III)</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>4.3.1 Structural Aspects of Complex III</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>4.3.2 X-Ray Analysis of Complex III</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>4.3.3 Functional Model of Complex III</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>4.3.4 Inhibitors of Complex III</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>4.4 Cytochrome c Oxidase (Complex IV)</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>4.4.1 Cytochrome c</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>4.4.2 Cytochrome c Oxidase: General Characteristics</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>4.4.3 X-Ray Analysis of Complex IV</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>4.4.4 Electron Transfer Pathway in Complex IV</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>4.4.5 Mechanism of $\Delta\mu_{H+}$ Generation by Cytochrome c Oxidase</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>4.4.6 Inhibitors of Cytochrome Oxidase</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>117</td>
</tr>
</tbody>
</table>
5 **Structure of Respiratory Chains of Prokaryotes and Mitochondria of Protozoa, Plants, and Fungi** 119

5.1 Mitochondrial Respiratory Chain of Protozoa, Plants, and Fungi ... 120

5.2 Structure of Prokaryotic Respiratory Chains ... 122

5.2.1 Respiratory Chain of *Paracoccus denitrificans* ... 123

5.2.2 Respiratory Chain of *Escherichia coli* .. 124

5.2.3 Redox Chain of *Ascaris* Mitochondria: Adaptation to Anaerobiosis ... 127

5.2.4 Respiratory Chain of *Azotobacter vinelandii* ... 128

5.2.5 Oxidation of Substrates with Positive Redox Potentials by Bacterial Respiratory Chains .. 129

5.2.6 Respiratory Chain of Cyanobacteria .. 131

5.2.7 Respiratory Chain of Chloroplasts .. 132

5.3 Electron Transport Chain of Methanogenic Archaea .. 132

5.3.1 Oxidative Phase of Methanogenesis .. 134

5.3.2 Reducing Phase of Methanogenesis .. 135

References .. 137

6 **Bacteriorhodopsin** .. 139

6.1 Principle of Functioning .. 139

6.2 Structure of Bacteriorhodopsin .. 141

6.3 Bacteriorhodopsin Photocycle .. 144

6.4 Light-Dependent Proton Transport by Bacteriorhodopsin .. 145

6.5 Other Retinal-Containing Proteins .. 149

6.5.1 Halorhodopsin .. 149

6.5.2 Distribution of Bacteriorhodopsin and its Analogs in Various Microorganisms 151

6.5.3 Sensory Rhodopsin and Phoborhodopsin .. 151

6.5.4 Animal Rhodopsin .. 153

References .. 155

Part III \(\Delta \mu_{H^+} \) Consumers

7 **\(\Delta \mu_{H^+} \)-Driven Chemical Work** ... 159

7.1 H\(^+\)-ATP Synthase .. 159

7.1.1 Subunit Composition of H\(^+\)-ATP Synthase .. 159

7.1.2 Three-Dimensional Structure and Arrangement in the Membrane ... 161

7.1.3 ATP hydrolysis by Isolated Factor F\(_1\) ... 167

7.1.4 Synthesis of Bound ATP by Isolated Factor F\(_1\) ... 169

7.1.5 F\(_o\)-Mediated H\(^+\)Conductance .. 169
7.1.6 Possible Mechanism of Energy Transduction by F₀F₁-ATP Synthase 172

7.1.7 H⁺/ATP Stoichiometry ... 174

7.2 H⁺-ATPases as Secondary Δµ_H⁺ Generators 176

7.2.1 F₀F₁-Type H⁺-ATPases .. 177
7.2.2 V₀V₁-Type H⁺-ATPases 179
7.2.3 E₁E₂-Type H⁺-ATPases 180
7.2.4 Interrelations of Various Functions of H⁺-ATPases 182

7.3 H⁺-Pyrophosphate Synthase (H⁺-Pyrophosphatase) 183

7.4 H⁺-Transhydrogenase ... 186

7.5 Other Systems of Reverse Transfer of Reducing Equivalents .. 190

References ... 191

8 Δµ_H⁺-Driven Mechanical Work: Bacterial Motility 195

8.1 Δµ_H⁺ Powers the Flagellar Motor 196
8.2 Structure of the Bacterial Flagellar Motor 197
8.3 A Possible Mechanism of the H⁺-motor 200
8.4 Δµ_H⁺-Driven Movement of Non-Flagellar Motile Prokaryotes and Intracellular Organelles of Eukaryotes 202
8.5 Motile Eukaryote: Prokaryote Symbionts 204

References ... 205

9 Δµ_H⁺-Driven Osmotic Work .. 207

9.1 Definition and Classification 207
9.2 ΔΨ As Driving Force .. 208
9.3 ΔpH As Driving Force .. 210
9.4 Total Δµ_H⁺ as Driving Force 211
9.5 Δµ_H⁺-Driven Transport Cascades 213
9.6 Carnitine: An Example of a Transmembrane Group Carrier 214
9.7 Some Examples of Δµ_H⁺-Driven Carriers 217
9.7.1 *Escherichia coli* Lactose, H⁺-Symporter 218
9.7.2 Mitochondrial ATP/ADP-Antiporter 221
9.8 Role of Δµ_H⁺ in Transport of Macromolecules 224
9.8.1 Transport of Mitochondrial Proteins: Biogenesis of Mitochondria ... 225
9.8.2 Transport of Bacterial Proteins 226
9.8.3 Role of ΔΨ in Protein Arrangement in the Membrane 227
9.8.4 Bacterial DNA Transport 227

References ... 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Δμ<sub>H⁺</sub> as Energy Source for Heat Production</td>
<td>231</td>
</tr>
<tr>
<td>10.1</td>
<td>Three Ways of Converting Metabolic Energy into Heat</td>
<td>231</td>
</tr>
<tr>
<td>10.2</td>
<td>Thermoregulatory Activation of Free Respiration in Animals</td>
<td>232</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Brown Fat</td>
<td>232</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Skeletal Muscles</td>
<td>236</td>
</tr>
<tr>
<td>10.3</td>
<td>Thermoregulatory Activation of Free Respiration in Plants</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>241</td>
</tr>
</tbody>
</table>

Part IV Interaction and Regulation of Proton Potential Generators and Consumers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Regulation, Transmission, and Buffering of Proton Potential</td>
<td>245</td>
</tr>
<tr>
<td>11.1</td>
<td>Regulation of Δμ<sub>H⁺</sub></td>
<td>245</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Alternative Functions of Respiration</td>
<td>245</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Regulation of Flows of Reducing Equivalents Between Cytosol and Mitochondria</td>
<td>248</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Interconversion of ΔΨ and ΔpH</td>
<td>249</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Relation of Δμ<sub>H⁺</sub> Control to the Main Regulatory Systems of Eukaryotic Cells</td>
<td>250</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Control of Δμ<sub>H⁺</sub> in Bacteria</td>
<td>251</td>
</tr>
<tr>
<td>11.2</td>
<td>Energy Transmission Along Membranes in the Form of Δμ<sub>H⁺</sub></td>
<td>252</td>
</tr>
<tr>
<td>11.2.1</td>
<td>General Remarks</td>
<td>252</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Lateral Transmission of Δμ<sub>H⁺</sub> Produced by Light-Dependent Generators in Halobacteria and Chloroplasts</td>
<td>253</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Trans-Cellular Power Transmission Along Cyanobacterial Trichomes</td>
<td>253</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Structure and Functions of Filamentous Mitochondria and Mitochondrial Reticulum</td>
<td>254</td>
</tr>
<tr>
<td>11.3</td>
<td>Buffering of Δμ<sub>H⁺</sub></td>
<td>265</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Na⁺/K⁺ Gradients as a Δμ<sub>H⁺</sub>-Buffer in Bacteria</td>
<td>265</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Other Δμ<sub>H⁺</sub>-Buffering Systems</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>

Part V The Sodium World

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Δμ<sub>Na⁺</sub> Generators</td>
<td>275</td>
</tr>
<tr>
<td>12.1</td>
<td>Na⁺-Motive Decarboxylases</td>
<td>275</td>
</tr>
<tr>
<td>12.2</td>
<td>Na⁺-Translocating NADH:Quinone-Oxidoreductase</td>
<td>277</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Primary Structure of Subunits of Na⁺-Translocating NADH:Quinone Oxidoreductase</td>
<td>277</td>
</tr>
</tbody>
</table>
12.2.2 Na⁺-NQR Prosthetic Groups ... 279
12.3 Na⁺-Motive Methyltransferase Complex from Methanogenic Archaea ... 280
12.4 Na⁺-Motive Formylmethanofuran Dehydrogenase from Methanogenic Archaea ... 281
12.5 Secondary ΔμNa⁺ Generators: Na⁺-Motive ATPases and Na⁺-Pyrophosphatase .. 282
12.5.1 Bacterial Na⁺-ATPases ... 282
12.5.2 Animal Na⁺/K⁺-ATPase and Na⁺-ATPase 283
12.5.3 Na⁺-Motive Pyrophosphatase ... 284
References ... 285

13 Utilization of ΔμNa⁺ Produced by Primary ΔμNa⁺ Generators 287
13.1 Osmotic Work Supported by ΔμNa⁺ .. 287
13.1.1 Na⁺, Metabolite-Symporters ... 287
13.1.2 Na⁺ Ions and Regulation of Cytoplasmic pH 288
13.2 Mechanical Work ... 289
13.3 Chemical Work ... 291
13.3.1 ΔμNa⁺-Driven ATP Synthesis in Anaerobic Bacteria 291
13.3.2 ΔμNa⁺ Consumers Performing Chemical Work in Methanogenic Archaea ... 293
References ... 294

14 Relations Between the Proton and Sodium Worlds 297
14.1 How Often is the Na⁺ Cycle Used by Living Cells? 297
14.2 Probable Evolutionary Relationships of the Proton and Sodium Worlds .. 298
14.3 Membrane-Linked Energy Transductions Involving Neither H⁺ Nor Na⁺ ... 300
References ... 302

Part VI Mitochondrial Reactive Oxygen Species and Mechanisms of Aging

15 Concept of Aging as a Result of Slow Programmed Poisoning of an Organism with Mitochondrial Reactive Oxygen Species 305
15.1 Nature of ROS and Paths of their Formation in the Cell 306
15.2 How Do Living Systems Protect Themselves from ROS? 309
15.2.1 Antioxidant Compounds .. 309
15.2.2 Decrease in Intracellular Oxygen Concentration 309
15.2.3 Decrease in ROS Production by the Respiratory Chain 312
15.2.4 Mitoptosis ... 315
15.2.5 Apoptosis .. 318
15.2.6 Necrosis ... 320
15.2.7 Phenoptosis .. 322
15.3 Biological Function of ROS 323
15.4 Aging as Slow Phenoptosis Caused by Increase in mROS Level .. 326
 15.4.1 Definition of the Term “Aging” and a Short Historical Overview of the Problem 326
 15.4.2 Phenoptosis of Organisms that Reproduce Only Once .. 329
 15.4.3 Can Aging be a Slow Form of Phenoptosis? .. 333
 15.4.4 Mutations that Prolong Lifespan .. 336
 15.4.5 ROS and Aging .. 339
 15.4.6 Naked Mole-Rat .. 340
 15.4.7 Aging Program: Working Hypothesis .. 342
 15.4.8 Paradox of Protein p53 .. 343
 15.4.9 Arrest of Age-Dependent Increase of Mitochondrial ROS as a Possible Way to Slow the Aging Program .. 344
References .. 346

16 Possible Medical Applications of Membrane Bioenergetics: Mitochondria-Targeted Antioxidants as Geroprotectors .. 355
 16.1 SkQ Decelerates the Aging Program .. 355
 16.2 Comparison of Effects of Food Restriction and SkQ .. 372
 16.3 From Homo sapiens to Homo sapiens liberatus .. 376
 16.4 Conclusions .. 377
References .. 378

Appendix 1: Energy, Work, and Laws of Thermodynamics .. 383

Appendix 2: Prosthetic Groups and Cofactors .. 393

Appendix 3: Inhibitors of Oxidative Phosphorylation .. 403

Appendix 4: Plant Hormones .. 407

Appendix 5: Mitochondria-Targeted Antioxidants and Related Penetrating Compounds .. 409

Appendix 6: Mitochondria-Targeted Natural Rechargeable Antioxidant .. 413
Principles of Bioenergetics
Skulachev, V.; Bogachev, A.V.; Kasparinsky, F.O.
2013, XVI, 436 p., Hardcover
ISBN: 978-3-642-33429-0