Contents

Part I General Aspects of Bioenergetics

1 Introduction .. 3
 1.1 Definition of the Term “Bioenergetics” and Some Milestones of its History 3
 1.2 Bioenergetics in the System of Biological Sciences 4
 1.3 Laws of Bioenergetics 9
 1.4 Evolution of Bioenergetic Mechanisms 13
 1.4.1 Adenosine Triphosphate 14
 1.4.2 Hypothesis of Adenine-Based Photosynthesis 15
 1.4.3 Reserve Energy Sources and Glycolysis 19
 1.4.4 Proton Channels and H⁺-ATPase as Means to Prevent Glycolysis-Induced Acidification of the Cell 21
 1.4.5 Bacteriorhodopsin-Based Photosynthesis as the Primordial Mechanism of Visible Light Energy Transduction 22
 1.4.6 Chlorophyll-Based Photosynthesis 23
 1.4.7 Respiratory Mechanism of Energy Supply 25

References ... 27

Part II Generators of Proton Potential

2 Chlorophyll-Based Generators of Proton Potential 31
 2.1 Light-Dependent Cyclic Redox Chain of Purple Bacteria 32
 2.1.1 Main Components of Redox Chain and Principle of Their Functioning 33
 2.1.2 Reaction Center Complex 36
 2.1.3 CoQH₂: Cytochrome c-Oxidoreductase 49

vii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4 Ways to Use $\Delta \mu_{H^+}$ Generated by the Cyclic Photoredox Chain</td>
<td>52</td>
</tr>
<tr>
<td>2.2 Noncyclic Photoredox Chain of Green Bacteria</td>
<td>53</td>
</tr>
<tr>
<td>2.3 Noncyclic Photoredox Chain of Chloroplasts and Cyanobacteria</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1 Principle of Functioning</td>
<td>55</td>
</tr>
<tr>
<td>2.3.2 Photosystem 1</td>
<td>58</td>
</tr>
<tr>
<td>2.3.3 Photosystem 2</td>
<td>61</td>
</tr>
<tr>
<td>2.3.4 Cytochrome b_{6f} Complex</td>
<td>63</td>
</tr>
<tr>
<td>2.3.5 Fate of $\Delta \mu_{H^+}$ Generated by the Chloroplast Photosynthetic Redox Chain</td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>3 Organotrophic Energetics</td>
<td>71</td>
</tr>
<tr>
<td>3.1 Substrates of Organotrophic Energetics</td>
<td>71</td>
</tr>
<tr>
<td>3.2 Short Review of Carbohydrate Metabolism</td>
<td>71</td>
</tr>
<tr>
<td>3.3 Mechanism of Substrate Phosphorylation</td>
<td>75</td>
</tr>
<tr>
<td>3.4 Energetic Efficiency of Fermentation</td>
<td>79</td>
</tr>
<tr>
<td>3.5 Carnosine</td>
<td>82</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>4 The Respiratory Chain</td>
<td>87</td>
</tr>
<tr>
<td>4.1 Principle of Functioning</td>
<td>87</td>
</tr>
<tr>
<td>4.2 NADH:CoQ-Oxidoreductase (Complex I)</td>
<td>92</td>
</tr>
<tr>
<td>4.2.1 Protein Composition of Complex I</td>
<td>93</td>
</tr>
<tr>
<td>4.2.2 Cofactor Composition of Complex I</td>
<td>94</td>
</tr>
<tr>
<td>4.2.3 Subfragments of Complex I</td>
<td>95</td>
</tr>
<tr>
<td>4.2.4 Inhibitors of Complex I</td>
<td>96</td>
</tr>
<tr>
<td>4.2.5 Possible Mechanisms of $\Delta \mu_{H^+}$ Generation by Complex I</td>
<td>97</td>
</tr>
<tr>
<td>4.3 CoQH$_2$:Cytochrome c-Oxidoreductase (Complex III)</td>
<td>102</td>
</tr>
<tr>
<td>4.3.1 Structural Aspects of Complex III</td>
<td>102</td>
</tr>
<tr>
<td>4.3.2 X-Ray Analysis of Complex III</td>
<td>104</td>
</tr>
<tr>
<td>4.3.3 Functional Model of Complex III</td>
<td>106</td>
</tr>
<tr>
<td>4.3.4 Inhibitors of Complex III</td>
<td>108</td>
</tr>
<tr>
<td>4.4 Cytochrome c Oxidase (Complex IV)</td>
<td>108</td>
</tr>
<tr>
<td>4.4.1 Cytochrome c</td>
<td>109</td>
</tr>
<tr>
<td>4.4.2 Cytochrome c Oxidase: General Characteristics</td>
<td>110</td>
</tr>
<tr>
<td>4.4.3 X-Ray Analysis of Complex IV</td>
<td>112</td>
</tr>
<tr>
<td>4.4.4 Electron Transfer Pathway in Complex IV</td>
<td>113</td>
</tr>
<tr>
<td>4.4.5 Mechanism of $\Delta \mu_{H^+}$ Generation by Cytochrome c Oxidase</td>
<td>115</td>
</tr>
<tr>
<td>4.4.6 Inhibitors of Cytochrome Oxidase</td>
<td>116</td>
</tr>
<tr>
<td>References</td>
<td>117</td>
</tr>
</tbody>
</table>
5 Structure of Respiratory Chains of Prokaryotes and Mitochondria of Protozoa, Plants, and Fungi 119
5.1 Mitochondrial Respiratory Chain of Protozoa, Plants, and Fungi .. 120
5.2 Structure of Prokaryotic Respiratory Chains .. 122
5.2.1 Respiratory Chain of Paracoccus denitrificans .. 123
5.2.2 Respiratory Chain of Escherichia coli ... 124
5.2.3 Redox Chain of Ascaris Mitochondria: Adaptation to Anaerobiosis 127
5.2.4 Respiratory Chain of Azotobacter vinelandii 128
5.2.5 Oxidation of Substrates with Positive Redox Potentials by Bacterial Respiratory Chains 129
5.2.6 Respiratory Chain of Cyanobacteria 131
5.2.7 Respiratory Chain of Chloroplasts 132
5.3 Electron Transport Chain of Methanogenic Archaea 132
5.3.1 Oxidative Phase of Methanogenesis 134
5.3.2 Reducing Phase of Methanogenesis 135
References .. 137

6 Bacteriorhodopsin 139
6.1 Principle of Functioning ... 139
6.2 Structure of Bacteriorhodopsin 141
6.3 Bacteriorhodopsin Photocycle 144
6.4 Light-Dependent Proton Transport by Bacteriorhodopsin 145
6.5 Other Retinal-Containing Proteins 149
6.5.1 Halorhodopsin 149
6.5.2 Distribution of Bacteriorhodopsin and its Analogs in Various Microorganisms 151
6.5.3 Sensory Rhodopsin and Phoborhodopsin 151
6.5.4 Animal Rhodopsin 153
References .. 155

Part III $\Delta$$\muH^+$-Consumers

7 $\Delta$$\muH^+$-Driven Chemical Work 159
7.1 H$^+$-ATP Synthase 159
7.1.1 Subunit Composition of H$^+$-ATP Synthase 159
7.1.2 Three-Dimensional Structure and Arrangement in the Membrane 161
7.1.3 ATP hydrolysis by Isolated Factor FI 167
7.1.4 Synthesis of Bound ATP by Isolated Factor FI 169
7.1.5 Fo-Mediated H$^+$Conductance 169
7.1.6 Possible Mechanism of Energy Transduction by F$_{o}$F$_{1}$-ATP Synthase 172
7.1.7 H$^+/ATP$ Stoichiometry 174

7.2 H$^+$-ATPases as Secondary $\Delta\mu_{H^+}$ Generators 176
7.2.1 F$_{o}$F$_{1}$-Type H$^+$-ATPases 177
7.2.2 V$_{o}$V$_{1}$-Type H$^+$-ATPases 179
7.2.3 E$_{1}$E$_{2}$-Type H$^+$-ATPases 180
7.2.4 Interrelations of Various Functions of H$^+$-ATPases ... 182

7.3 H$^+$-Pyrophosphate Synthase (H$^+$-Pyrophosphatase) 183
7.4 H$^+$-Transhydrogenase ... 186

7.5 Other Systems of Reverse Transfer of Reducing Equivalents 190

References ... 191

8 $\Delta\mu_{H^+}$-Driven Mechanical Work: Bacterial Motility 195
8.1 $\Delta\mu_{H^+}$ Powers the Flagellar Motor 196
8.2 Structure of the Bacterial Flagellar Motor 197
8.3 A Possible Mechanism of the H$^+$-motor 200
8.4 $\Delta\mu_{H^+}$-Driven Movement of Non-Flagellar Motile Prokaryotes and Intracellular Organelles of Eukaryotes 202
8.5 Motile Eukaryote: Prokaryote Symbionts 204

References ... 205

9 $\Delta\mu_{H^+}$-Driven Osmotic Work 207
9.1 Definition and Classification 207
9.2 $\Delta\Psi$ As Driving Force 208
9.3 ΔpH As Driving Force 210
9.4 Total $\Delta\mu_{H^+}$ as Driving Force 211
9.5 $\Delta\mu_{H^+}$-Driven Transport Cascades 213
9.6 Carnitine: An Example of a Transmembrane Group Carrier ... 214
9.7 Some Examples of $\Delta\mu_{H^+}$-Driven Carriers 217
 9.7.1 Escherichia coli Lactose, H$^+$-Symporter 218
 9.7.2 Mitochondrial ATP/ADP-Antiporter 221
9.8 Role of $\Delta\mu_{H^+}$ in Transport of Macromolecules 224
 9.8.1 Transport of Mitochondrial Proteins: Biogenesis of Mitochondria 225
 9.8.2 Transport of Bacterial Proteins 226
 9.8.3 Role of $\Delta\Psi$ in Protein Arrangement in the Membrane 227
 9.8.4 Bacterial DNA Transport 227

References ... 228
10 $\Delta \mu_{H^+}$ as Energy Source for Heat Production 231
 10.1 Three Ways of Converting Metabolic Energy into Heat 231
 10.2 Thermoregulatory Activation of Free Respiration in Animals 232
 10.2.1 Brown Fat .. 232
 10.2.2 Skeletal Muscles .. 236
 10.3 Thermoregulatory Activation of Free Respiration in Plants 240
References ... 241

Part IV Interaction and Regulation of Proton Potential Generators and Consumers

11 Regulation, Transmission, and Buffering of Proton Potential 245
 11.1 Regulation of $\Delta \mu_{H^+}$.. 245
 11.1.1 Alternative Functions of Respiration 245
 11.1.2 Regulation of Flows of Reducing Equivalents Between Cytosol and Mitochondria 248
 11.1.3 Interconversion of $\Delta \Psi$ and $\Delta \rho H$ 249
 11.1.4 Relation of $\Delta \mu_{H^+}$ Control to the Main Regulatory Systems of Eukaryotic Cells 250
 11.1.5 Control of $\Delta \mu_{H^+}$ in Bacteria 251
 11.2 Energy Transmission Along Membranes in the Form of $\Delta \mu_{H^+}$... 252
 11.2.1 General Remarks .. 252
 11.2.2 Lateral Transmission of $\Delta \mu_{H^+}$ Produced by Light-Dependent Generators in Halobacteria and Chloroplasts 253
 11.2.3 Trans-Cellular Power Transmission Along Cyanobacterial Trichomes ... 253
 11.2.4 Structure and Functions of Filamentous Mitochondria and Mitochondrial Reticulum 254
 11.3 Buffering of $\Delta \mu_{H^+}$.. 265
 11.3.1 Na⁺/K⁺ Gradients as a $\Delta \mu_{H^+}$-Buffer in Bacteria 265
 11.3.2 Other $\Delta \mu_{H^+}$-Buffering Systems 268
References ... 269

Part V The Sodium World

12 $\Delta \mu_{Na^+}$ Generators ... 275
 12.1 Na⁺-Motive Decarboxylases .. 275
 12.2 Na⁺-Translocating NADH:Quinone-Oxidoreductase 277
 12.2.1 Primary Structure of Subunits of Na⁺-Translocating NADH:Quinone Oxidoreductase 277
15.2.5 Apoptosis ... 318
15.2.6 Necrosis ... 320
15.2.7 Phenoptosis ... 322
15.3 Biological Function of ROS. 323
15.4 Aging as Slow Phenoptosis Caused by Increase in mROS Level 326
15.4.1 Definition of the Term “Aging” and a Short Historical Overview of the Problem 326
15.4.2 Phenoptosis of Organisms that Reproduce Only Once ... 329
15.4.3 Can Aging be a Slow Form of Phenoptosis? ... 333
15.4.4 Mutations that Prolong Lifespan ... 336
15.4.5 ROS and Aging ... 339
15.4.6 Naked Mole-Rat ... 340
15.4.7 Aging Program: Working Hypothesis ... 342
15.4.8 Paradox of Protein p53 ... 343
15.4.9 Arrest of Age-Dependent Increase of Mitochondrial ROS as a Possible Way to Slow the Aging Program ... 344
References ... 346

16 Possible Medical Applications of Membrane Bioenergetics:
Mitochondria-Targeted Antioxidants as Geroprotectors 355
16.1 SkQ Decelerates the Aging Program ... 355
16.2 Comparison of Effects of Food Restriction and SkQ. 372
16.3 From Homo sapiens to Homo sapiens liberatus ... 376
16.4 Conclusions ... 377
References ... 378

Appendix 1: Energy, Work, and Laws of Thermodynamics 383
Appendix 2: Prosthetic Groups and Cofactors 393
Appendix 3: Inhibitors of Oxidative Phosphorylation 403
Appendix 4: Plant Hormones .. 407
Appendix 5: Mitochondria-Targeted Antioxidants and Related Penetrating Compounds 409
Appendix 6: Mitochondria-Targeted Natural Rechargeable Antioxidant ... 413
Principles of Bioenergetics
Skulachev, V.; Bogachev, A.V.; Kasparinsky, F.O.
2013, XVI, 436 p., Hardcover
ISBN: 978-3-642-33429-0