Contents

1 **Introduction** .. 1
 1.1 Hypothesis and Objectives 3
 1.2 Approach 3
 1.3 Contributions of this Thesis 5
 1.4 Structure of the Thesis 7
 References 8

2 **Computation in Complex Systems** 13
 2.1 Complex Systems 14
 2.1.1 Order, Disorder and Phase Transitions 15
 2.1.2 Self-Organisation 16
 2.1.3 Motivation for Studying Complex Systems 17
 2.2 Information theory 18
 2.2.1 Information-Theoretic Measures 18
 2.2.2 Localising Information-Theoretical Measures 22
 2.2.3 Information-Theoretic Measures of Continuous Variables .. 24
 2.2.4 Reasons for Application to Complex Systems 25
 2.3 Cellular Automata 29
 2.3.1 Functionality of Cellular Automata 29
 2.3.2 Complex Behaviour in Cellular Automata 30
 2.3.3 Computation in Cellular Automata 32
 2.3.4 Examples of Distributed Computation in CAs 35
 2.3.5 Filtering Structure in Cellular Automata 37
 2.4 The Dynamics of Networks 38
 2.4.1 Random Boolean Networks as a Model of Dynamic Network Behavior 40
 2.5 Guided Self-Organisation 42
 2.6 Opportunity to Quantify the Information Dynamics of Distributed Computation 45
 References 46
3 Information Storage

3.1 Excess Entropy as Total Information Storage
 3.1.1 Single-Agent and Collective Excess Entropy
 3.1.2 Local Excess Entropy

3.2 Active Information Storage as Storage in Use
 3.2.1 Local Active Information Storage
 3.2.2 Active Information Storage and Entropy Rate

3.3 Local Information Storage in Cellular Automata
 3.3.1 Appropriate History Lengths
 3.3.2 Periodic Blinker and Domain Processes
 3.3.3 Negative Informative Storage as Misinformation at Particles
 3.3.4 Particles Create New Information Storage
 3.3.5 Structured Information Storage in Domain of Rule 18
 3.3.6 Misinformation and New Storage Creation by Domain Walls
 3.3.7 Local Temporal Entropy Rate Highlights Moving Particles
 3.3.8 Absence of Coherent Information Storage Structure

3.4 Summary

References

4 Information Transfer

4.1 Transfer Entropy as Predictive Information Transfer
 4.1.1 Transfer Entropy
 4.1.2 Local Transfer Entropy
 4.1.3 Apparent, Conditional and Complete Transfer Entropy
 4.1.4 Total Information Composition and Collective Information Transfer

4.2 Local Information Transfer in Cellular Automata
 4.2.1 Inadequate Measures for Information Transfer
 4.2.2 Particles as Dominant, Coherent Information Transfer Structures
 4.2.3 Ambient Transfer in Backgrounds Domains
 4.2.4 Apparent and Complete Transfer Entropy are Complementary

4.3 Information Flow as Causal Effect
 4.3.1 Information Flow
 4.3.2 Local Information Flow

4.4 Local Causal Information Flow in Cellular Automata
 4.4.1 Information Transfer, Causal Flow and Emergent Structures
4.4.2 Information Transfer to be Measured from Causal Sources Only .. 107
4.4.3 Complete Transfer Entropy as an Inferrer for Information Flow .. 108
4.5 Summary ... 110
References .. 112

5 Information Modification ... 117
5.1 Separable Information as a Detector for Non-Trivial Information Modification 118
5.2 Local Information Modification in Cellular Automata ... 122
 5.2.1 Hard Particle Collisions as Dominant Modification Events .. 123
 5.2.2 Soft Collisions Between Gliders and the Domain .. 125
 5.2.3 Storage Modifications in Non-Periodic Domains ... 125
 5.2.4 Proliferation of Information Modification in Chaotic Dynamics .. 126
 5.2.5 Modification Only Understood in Context of Past History .. 126
5.3 Irreversibly Destroyed Information 127
 5.3.1 Measuring Information Destruction in Distributed Computation 128
 5.3.2 Irreversible Information Destruction in Cellular Automata .. 132
5.4 Summary ... 137
References .. 138

6 Information Dynamics in Networks and Phase Transitions .. 141
6.1 Phase Transitions in Random Boolean Networks ... 143
 6.1.1 Experimental Details ... 143
 6.1.2 Results and Discussion .. 145
6.2 Cascading Failures in Power Grids ... 149
 6.2.1 Cascading Failures Model .. 150
 6.2.2 Measuring Information Dynamics in Cascading Failures .. 151
 6.2.3 Results and Discussion ... 152
6.3 Summary ... 156
References .. 158

7 Coherent Information Structure in Complex Computation ... 163
7.1 Introduction ... 163
7.2 Local Information Dynamics State-Space ... 166
7.3 Measuring Coherent Information Structure in the State-Space .. 169
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1 Coherent Information Structure Measurements in CAs</td>
<td>170</td>
</tr>
<tr>
<td>7.3.2 Coherent Information Structure Measurements in RBNs</td>
<td>171</td>
</tr>
<tr>
<td>7.4 Summary</td>
<td>173</td>
</tr>
<tr>
<td>References</td>
<td>174</td>
</tr>
<tr>
<td>8 Information Transfer in Biological and Bio-Inspired Systems</td>
<td>177</td>
</tr>
<tr>
<td>8.1 Heart and Breath Rate Interaction in Sleep Apnea</td>
<td>178</td>
</tr>
<tr>
<td>8.2 Establishing Directed Interregional Cortical Information Structure</td>
<td>179</td>
</tr>
<tr>
<td>8.2.1 Introduction</td>
<td>180</td>
</tr>
<tr>
<td>8.2.2 Interregional Information Structure Analysis Technique</td>
<td>182</td>
</tr>
<tr>
<td>8.2.3 Application to fMRI Experimental Data</td>
<td>187</td>
</tr>
<tr>
<td>8.2.4 Conclusion</td>
<td>191</td>
</tr>
<tr>
<td>8.3 Evolution of Coherent Information Transfer Structure</td>
<td>191</td>
</tr>
<tr>
<td>8.3.1 Evolving the Snakebot for Maximum Information Transfer</td>
<td>193</td>
</tr>
<tr>
<td>8.3.2 Results and Discussion</td>
<td>195</td>
</tr>
<tr>
<td>8.3.3 Conclusion</td>
<td>198</td>
</tr>
<tr>
<td>8.4 Summary</td>
<td>199</td>
</tr>
<tr>
<td>References</td>
<td>200</td>
</tr>
<tr>
<td>9 Conclusion</td>
<td>203</td>
</tr>
<tr>
<td>9.1 Summary of Main Contributions</td>
<td>203</td>
</tr>
<tr>
<td>9.1.1 Framework for the Information Dynamics of Distributed Computation</td>
<td>203</td>
</tr>
<tr>
<td>9.1.2 Measuring Information Storage</td>
<td>204</td>
</tr>
<tr>
<td>9.1.3 Measuring Information Transfer</td>
<td>204</td>
</tr>
<tr>
<td>9.1.4 Measuring Information Modification</td>
<td>205</td>
</tr>
<tr>
<td>9.1.5 Quantitative Understanding of Information Dynamics in CAs</td>
<td>205</td>
</tr>
<tr>
<td>9.1.6 Measuring Computational Properties in Phase Transitions in Networks</td>
<td>206</td>
</tr>
<tr>
<td>9.1.7 Methodology for Studying Coherent Information Structure</td>
<td>206</td>
</tr>
<tr>
<td>9.1.8 Demonstrated Application Areas for Information Dynamics</td>
<td>207</td>
</tr>
<tr>
<td>9.2 Directions for Future Work</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
</tr>
<tr>
<td>Appendix A: Consideration of Alternative Method of Localisation</td>
<td>213</td>
</tr>
<tr>
<td>Appendix B: Entropy Rate Convergence and Divergent Excess Entropy</td>
<td>217</td>
</tr>
<tr>
<td>Appendix C: Relation of Transfer Entropy to Massey’s Directed Information</td>
<td>219</td>
</tr>
<tr>
<td>Appendix D: Back-Door Adjustment</td>
<td>221</td>
</tr>
<tr>
<td>Appendix E: Complete Transfer Entropy for Causal Structure Inference</td>
<td>223</td>
</tr>
<tr>
<td>Appendix F: Information Destruction Only Measured in Open Computational Systems</td>
<td>225</td>
</tr>
<tr>
<td>Appendix G: Circumstantial Evidence of Maximum Coherence in Complex Computation</td>
<td>227</td>
</tr>
<tr>
<td>Author Biography</td>
<td>231</td>
</tr>
<tr>
<td>Index</td>
<td>233</td>
</tr>
</tbody>
</table>
The Local Information Dynamics of Distributed Computation in Complex Systems
Lizier, J.T.
2013, XXIV, 236 p., Hardcover
ISBN: 978-3-642-32951-7