3.6 P-u Diagram for a Shock Crossing a Boundary into a Material of Higher Impedance .. 37
3.7 Impedance Matching Treatment of Rarefaction Waves 38
3.8 Impedance Matching for a Shock Reaching a Free Surface 39
3.9 Impedance Matching for a Flyer Plate Hitting a Stationary Plate of the Same Material ... 41
3.10 Disturbance Velocity in a 1-D Eulerian Cartesian Coordinate System Fixed in Space .. 42
3.10.1 Symmetric Impact Example 42
3.10.2 Disturbance Velocity for General Case 44
3.11 Impedance Matching for Four Basic Cases 45
3.12 Impedance Matching for Thin Foils 48
3.12.1 Summary of the Practical Lessons for Thin Foils 49
3.13 Impedance Matching for Multiple Waves Is an Approximation ... 52
3.14 Wave-Wave Interaction and Contact Discontinuity 53
References .. 57

4 Experimental Techniques .. 59
4.1 Selected Experimental Techniques to Measure Shock Wave Parameters .. 59
4.2 Explosive and Flyer Plate Shock Driver Systems 59
4.3 Laser Shock Drivers .. 62
4.4 Early Impedance Matching Experiments 63
4.5 Shock Velocity Measurements 64
4.6 Free Surface Velocity Measurement Using a Streak Camera . 66
4.7 Electromagnetic Particle Velocity Gauge 67
4.8 Laser Velocity Interferometry 68
4.9 VISAR ... 68
4.10 ORVIS ... 69
4.11 Fabry-Perot .. 70
4.12 Heterodyne System .. 71
4.13 Optical Windows on Test Samples 72
4.14 Quartz Stress Gauge .. 72
4.15 Quartz Gauge Technique for Measuring Low Pressure Hugoniot ... 74
4.16 Quartz Gauge Technique for Measuring the Hugoniot of a Thin Material ... 75
4.17 Manganin Stress Gauge ... 75
4.18 Other Stress Gauges ... 78
4.19 Proton Radiography for Accurate Density Measurements of Shock Wave ... 80
4.20 Issues for Making Temperature Measurements Behind Shock Waves ... 80
4.21 Error Analysis for Experiments 82
4.22 Random Errors .. 83
4.23 Systematic Errors 85
4.24 Combining Random and Systematic Errors to Get Final Error ... 86
4.25 Example of Errors in Measurement of a Cylinder’s Density 86
4.26 Error Analysis for a Rotating Mirror Streak Camera Measurement of Free Surface Velocity 88
4.26.1 Sources of Various Errors 89
4.26.2 Errors in Trace Angle γ and Wave Tilt Angle ω 90
References .. 94

5 Thermodynamics of Shock Waves .. 101
5.1 Thermodynamics Review .. 101
5.2 Fundamental Thermodynamic Relation 102
5.3 Equations of State ... 103
5.4 Hugoniot Is Steeper than Isentrope from Same Initial State 105
5.5 Isentrope is Steeper than Isotherm from Same Initial State 106
5.6 Entropy Along Hugoniot 107
5.7 Isentrope and Hugoniot Are Same to Second Order in Compression at a Common (P, v) Point 109
5.8 Differential Equation for Hugoniots 110
5.9 Temperature at an Isentrope Point with C_vγ/v Constant 111
5.10 Temperature at a Hugoniot Point for C_vγ/v Constant 112
5.11 Calculation of Gruneisen Parameter at (P = 0, v_o) from Thermodynamic Parameters and Sound Speed Values 114
5.12 Determination of Gruneisen Parameter from Shock Wave Release Velocity Measured at Peak Shock Pressure 115
5.13 Numerical Calculations of Isentropes and Isotherms from Hugoniot Data for C_v and γ/v Assumed Constant 116
5.14 Thermodynamic Consistent Surface 118
5.15 Complete Consistent Equation of State for Materials with a Constant C_v .. 120
5.16 Thermodynamic Surface Defined by Isotherm with a Constant C_v .. 122
5.17 Isentrope and Isotherm on the Thermodynamic Surface with C_v and γ/v Constant and Principal Hugoniot as the Reference Curve .. 130
5.18 Mie-Gruneisen Equation of State 133
5.19 Mie-Gruneisen Equation of State with C_vγ/v Constant and Principal Hugoniot as the Reference Curve 134
5.20 Thermodynamics Impose Stringent Constraints on Use of the Gruneisen Equation of State With Hugoniot as Thermodynamic Reference Curve 135
5.21 Calculation of Hugoniot Where Initial Temperature Is Different than Principal Hugoniot’s with C_v and γ/v Assumed Constant ... 136
5.22 Recentered Hugoniots Using Gruneisen Equation of State with C_v and γ/v Constant 137
5.23 Determination of Volume Dependence of ∂P/∂T)_v or γ(v) 139
References .. 144
6 Solids

6.1 Compression of Solids .. 147
6.2 Hooke's Tensor Law for Elastic Isotropic Solids 147
6.3 Uniaxial Stress .. 149
6.4 Hydrostatic Pressure on a Solid 151
6.5 Uniaxial Strain ... 151
6.8 Impedance Matching Issues for Elastic–Plastic Material with a Free Surface .. 157
6.9 Material Strength at High Stress Hugoniot States 163
6.10 Porous Materials .. 164
6.11 Simple Model for Totally Compacted Porous Material When Strength Can Be Ignored ... 166
6.12 Gruneisen EOS for Porous Material with Principal Hugoniot as Reference and \(\gamma/v \) Constant ... 167
6.13 Temperature for a Shocked Porous Material with \(C_v \) Constant and Pores Are Totally Compacted with Strength Ignored 168
6.14 Phenomenological P-\(\alpha \) Model for Porous Material Not Totally Compacted .. 170
6.15 Snowplow Model for Shock Wave Attenuation in Porous Solids ... 173

References ... 177

7 Differential Conservation Equations and Time-Dependent Flow

7.1 Mass, Momentum and Internal Energy Fluxes for 1-D Flow 179
7.2 Mass Differential Conservation Equation 180
7.3 Momentum Differential Conservation Equation 182
7.4 Rayleigh Line Is Compression Path for a Steady Shock Wave ... 183
7.5 Energy Differential Conservation Equation 184
7.6 Summary of Eulerian Differential Conservation Equations 186
7.7 Rise-Time and Shape of a Steady Shock Wave Due to Viscosity ... 186
7.9 Time-Dependent Material Properties Overview 192
7.9.1 Elastic–Plastic Solids .. 192
7.9.2 Elastic–Plastic Solid that Undergoes a Phase Transition .. 193
7.9.3 Initiating High Explosive ... 195
7.10 Time and Spatial Scales Affect Dynamic Material Response ... 196
7.11 Elastic Wave Stress Decay Described by a Maxwell-Like Material Model .. 197

References ... 199
8 First-Order Polymorphic and Melting Phase Transitions Under Shock Loading .. 201
8.1 Introduction .. 201
8.2 General Background of Polymorphism Under Shock Compression .. 203
8.3 Select Observed Transitions in Shocked Materials 203
8.4 Fast Reversible Phase Transition in Iron 206
8.4.1 Evidence for Non-equilibrium Behavior in Mixed Phase Region of Iron 208
8.4.2 Martensitic Phase Transition..................................... 209
8.5 Steady Shock Wave Profiles for Shock Compressed Thick Iron Samples .. 210
8.6 Experimental Rise-Time Measurements of the Steady Plastic II Shock in Polycrystalline Iron 212
8.7 Permanent Regime Theory for Rise-Time of a Steady Transmitted Shock Wave Front Where the Phase Transition Occurs and Material Strength Is Ignored 213
8.8 Time-Dependent Flow for Transmission Shock Waves in Iron for Thin Samples 217
8.9 Kinetics of Plastic I Shock Decay 222
8.10 Reverse Impact Experiments of Iron onto a VISAR Window . 225
8.11 Fast Shock Induced Phase Transition in KCL with Two Measured Rates from Reverse Impact Experiments ... 226
8.12 Polymorphic Phase Transitions with Slow Transition Rates . 228
8.13 Nucleation of Phase Transitions Under Shock Loading . . 229
8.14 Solid and Liquid Phase Thermodynamic Surface for Aluminum ... 232
8.15 Melting in Shocked Porous Aluminum 234
8.16 Shock Loading Porous Aluminum Along Metastable Extension of Solid Hugoniot Above the Solid Melt Line 236
8.17 Determination if Fully Compacted Aluminum Can Melt Under Pressure Release Down an Isentrope After Being Shock Loaded ... 237
References ... 238

9 Secondary Ideal High Explosives Non-steady Initiation Process and Steady Detonation Wave Models 243
9.1 Explosives .. 243
9.2 Secondary Explosives Initiation 245
9.3 High Pressure Shock Initiation of Homogeneous Explosives . . . 247
9.4 Low Pressure Shock Initiation of Heterogeneous Explosives 247
9.5 High Pressure Shock Initiation of Heterogeneous Explosives .. 250
9.6 Phenomenological Energy Fluence Initiation Model 250
9.7 Phenomenological Reactive Flow Reaction Rate Models for Heterogeneous HE Initiation 252
9.8 Shock Sensitivity Tests 255
9.9 Steady 1-D Detonation Shock Waves in Near-Ideal Explosives ... 259
9.10 Chapman-Jouget (CJ) Detonation Model for Near Ideal High Explosives .. 261
 9.10.1 Case 1 Initiation by Thick Driver Plate 262
 9.10.2 Case 2 Initiation by Very Thin Flyer or a Booster HE with Its Initial Surface Free 262
9.11 CJ Detonation Model with Polytropic Equation of State for Gas Products .. 264
9.12 Peak Pressure Induced in Material by Explosive Using CJ Detonation Model 267
9.13 P-u Curves for Comp B Explosive Products Using Polytropic Gas Equation of State 269
9.14 Explosive Product Curves from JWL Equation of State 271
9.15 ZND Detonation Model .. 274
9.16 Detonation Spike Pressure Estimates 276
9.17 Pressure Drop Behind Detonation Spike 277
9.18 Thermal Initiation of Explosives 278
9.19 Adiabatic or Instantaneous Volume Thermal Explosion 282
References .. 285

10 Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives .. 291
 10.1 Non-ideal Explosives .. 291
 10.2 Non-ideal Explosive’s Evidence of Late-Time Energy Release .. 294
 10.3 Summary of Key Detonation Properties Due to Two Dimensional Flow in Right Circular Cylinders of Explosives 296
 10.4 Detonation Wave Velocity, Curvature and Failure Diameter Measurement Techniques 297
 10.5 Thin Foil Velocity Technique for Measuring CJ State of a Near-Ideal HE ... 303
 10.6 Navy Impedance Matching Technique for Measuring CJ State ... 305
 10.6.1 Simple Approximate Solution for Polytropic Parameter G from Navy Technique 307
 10.7 CJ States Defined by Determining JWL Equation of State for Near Ideal HE’s ... 309
 10.8 Orvis Line VISAR Technique with Very Good Temporal Resolution to Measure CJ Reaction Zone Length of a Near-Ideal HE ... 310
 10.9 1-D Experimental Technique for Determining Sonic Plane ... 316
 10.10 Significance of Experimental Measurements of Detonation Wave Properties ... 317
10.11 Curved Front Detonations in Right Circular High Explosive Cylinders ... 318
10.12 Calculated PBXN-111 Detonation Sonic Zone Lengths as a Function of Cylinder Diameter 321
10.13 2D Flow Across Curved Shock Front .. 323
References ... 326

11 Special Topics: Lagrangian Coordinates, Spall, and Radiation Induced Shocks ... 329
11.1 Lagrangian Coordinates .. 329
11.2 Steady Flow of Two Forward Facing Shock Waves in Eulerian and Lagrangian Coordinates 330
11.3 Conservation Equations for Two Steady Forward Facing Shocks in Lagrangian Coordinates 333
11.4 Relief Wave Speeds .. 334
11.5 Sound Speed Determined from Symmetric Impact 335
11.6 Lagrangian Differential Conservation Equations 337
11.7 Planar Spall of Materials Under Dynamic Loading 338
11.8 Dynamic Method of Detecting Spalling 341
11.9 Spall Strength of Condensed Matter 343
11.10 Smooth Planar Spall Due to a Fast Reversible Phase Transition ... 344
11.11 Radiation Induced Shocks .. 346
References ... 352

Appendix 1: Symbols, Useful Conversion Factors, and Some Basic Equations for Steady Shock Waves 355
Appendix 2: Hugoniot for Some Materials 359
Appendix 3: One-Dimensional Steady Shock Conservation Equations ... 361
Appendix 4: Impedance Matching Rule and Four Basic Examples 363
Appendix 5: Analytical Impedance Matching for Two Most Common Cases ... 365
Appendix 6: Thermodynamic Parameter Definitions and Relationships ... 367
Erratum to: Shock Wave Compression of Condensed Matter E1
Index .. 371
Shock Wave Compression of Condensed Matter
A Primer
Forbes, J.W.
2012, XIV, 374 p. 211 illus., 11 illus. in color., Hardcover
ISBN: 978-3-642-32534-2