Contents

1 Introduction to Shock Wave Physics of Condensed Matter 1
 1.1 Introduction ... 1
 1.2 General Assumptions 1
 1.3 Brief History of Shock Field in the United States of America 2
 1.4 Practical Value of Shock Field 3
 1.5 Techniques for Producing 1-D Plane Shock Waves 4
 1.6 Dynamic Versus Static Compression 5
 1.7 Select Areas of Shock Wave Research 5
 1.8 What Does a Shock Wave in Condensed Matter Look Like? 6
 References .. 8

2 Plane One-Dimensional Shock Waves 13
 2.1 Definition of a Plane One-Dimensional Shock Wave 13
 2.1.1 A More Practical Definition for a Steady Shock Wave 13
 2.2 Practical Description of u_S, u_p, E, P and Disturbance Velocity ... 14
 2.3 Conservation Equations for a 1-D Plane Steady Shock Wave 16
 2.4 A Single Shock Wave Defines Only One (P, v) Point on a Hugoniot .. 18
 2.5 Two Plane Shock Waves 1-D Conservation Relations 20
 2.6 Wave Stability ... 21
 2.6.1 Necessary Condition for a Shock Wave to Form 22
 References .. 29

3 Impedance Matching Technique .. 31
 3.1 Waves Response to Material Interfaces and Intersection with Other Waves ... 31
 3.1.1 Practical Uses for Impedance Matching 31
 3.2 Distance-Time (x-t) Wave Propagation Diagrams 31
 3.3 Introduction to Principal P-u Curves with Initial State ($P = 0$, $u = 0$) .. 33
 3.4 Introduction to P-u Curve with Initial State (P_1, u_1) 34
 3.5 P-u Curves for Materials with $u_S = A + bu_p$ 36
3.6 P-u Diagram for a Shock Crossing a Boundary into a Material of Higher Impedance .. 37
3.7 Impedance Matching Treatment of Rarefaction Waves 38
3.8 Impedance Matching for a Shock Reaching a Free Surface 39
3.9 Impedance Matching for a Flyer Plate Hitting a Stationary Plate of the Same Material .. 41
3.10 Disturbance Velocity in a 1-D Eulerian Cartesian Coordinate System Fixed in Space ... 42
3.10.1 Symmetric Impact Example ... 42
3.10.2 Disturbance Velocity for General Case 44
3.11 Impedance Matching for Four Basic Cases 45
3.12 Impedance Matching for Thin Foils 48
3.12.1 Summary of the Practical Lessons for Thin Foils 49
3.13 Impedance Matching for Multiple Waves Is an Approximation ... 52
3.14 Wave-Wave Interaction and Contact Discontinuity 53
References .. 57

4 Experimental Techniques ... 59
4.1 Selected Experimental Techniques to Measure Shock Wave Parameters ... 59
4.2 Explosive and Flyer Plate Shock Driver Systems 59
4.3 Laser Shock Drivers ... 62
4.4 Early Impedance Matching Experiments 63
4.5 Shock Velocity Measurements .. 64
4.6 Free Surface Velocity Measurement Using a Streak Camera ... 66
4.7 Electromagnetic Particle Velocity Gauge 67
4.8 Laser Velocity Interferometry .. 68
4.9 VISAR ... 68
4.10 ORVIS ... 69
4.11 Fabry-Perot ... 70
4.12 Heterodyne System ... 71
4.13 Optical Windows on Test Samples 72
4.14 Quartz Stress Gauge ... 72
4.15 Quartz Gauge Technique for Measuring Low Pressure Hugoniot ... 74
4.16 Quartz Gauge Technique for Measuring the Hugoniot of a Thin Material ... 75
4.17 Manganin Stress Gauge .. 75
4.18 Other Stress Gauges .. 78
4.19 Proton Radiography for Accurate Density Measurements of Shock Wave ... 80
4.20 Issues for Making Temperature Measurements Behind Shock Waves ... 80
4.21 Error Analysis for Experiments 82
4.22 Random Errors ... 83
6 Solids .. 147
6.1 Compression of Solids .. 147
6.2 Hookes Tensor Law for Elastic Isotropic Solids 149
6.3 Uniaxial Stress .. 149
6.4 Hydrostatic Pressure on a Solid 151
6.5 Uniaxial Strain .. 151
6.6 Elastic–Plastic Solids Under 1-D Plane Shock Loading 152
6.7 Elastic–Plastic 1-D Plane Shock Compression Treatment Using
 Hookes Law for Isotropic Solids 153
6.8 Impedance Matching Issues for Elastic–Plastic Material
 with a Free Surface .. 157
6.9 Material Strength at High Stress Hugoniot States 163
6.10 Porous Materials ... 164
6.11 Simple Model for Totally Compacted Porous Material
 When Strength Can Be Ignored 166
6.12 Gruneisen EOS for Porous Material with Principal Hugoniot
 as Reference and γ/v Constant 167
6.13 Temperature for a Shocked Porous Material with C_v Constant
 and Pores Are Totally Compacted with Strength Ignored 168
6.14 Phenomenological $P-\alpha$ Model for Porous Material Not
 Totally Compacted ... 170
6.15 Snowplow Model for Shock Wave Attenuation in
 Porous Solids .. 173
References ... 177

7 Differential Conservation Equations and Time-Dependent Flow ... 179
7.1 Mass, Momentum and Internal Energy Fluxes for 1-D Flow ... 179
7.2 Mass Differential Conservation Equation 180
7.3 Momentum Differential Conservation Equation 182
7.4 Rayleigh Line Is Compression Path for a Steady Shock Wave 183
7.5 Energy Differential Conservation Equation 184
7.6 Summary of Eulerian Differential Conservation Equations . 186
7.7 Rise-Time and Shape of a Steady Shock Wave Due
 to Viscosity .. 186
7.8 Visco-Elastic Properties Represent Behavior of
 Polymethylmethacrylate (PMMA) Under Shock Loading 189
7.9 Time-Dependent Material Properties Overview 192
 7.9.1 Elastic–Plastic Solids 192
 7.9.2 Elastic–Plastic Solid that Undergoes a Phase
 Transition .. 193
 7.9.3 Initiating High Explosive 195
7.10 Time and Spatial Scales Affect Dynamic Material Response . 196
7.11 Elastic Wave Stress Decay Described by a Maxwell-Like
 Material Model ... 197
References ... 199
9.9 Steady 1-D Detonation Shock Waves in Near-Ideal Explosives 259
9.10 Chapman-Jouget (CJ) Detonation Model for Near Ideal High Explosives 261
 9.10.1 Case 1 Initiation by Thick Driver Plate .. 262
 9.10.2 Case 2 Initiation by Very Thin Flyer or a Booster HE with Its Initial Surface Free 262
9.11 CJ Detonation Model with Polytropic Equation of State for Gas Products 264
9.12 Peak Pressure Induced in Material by Explosive Using CJ Detonation Model 267
9.13 P-u Curves for Comp B Explosive Products Using Polytropic Gas Equation of State 269
9.14 Explosive Product Curves from JWL Equation of State .. 271
9.15 ZND Detonation Model ... 274
9.16 Detonation Spike Pressure Estimates .. 276
9.17 Pressure Drop Behind Detonation Spike ... 277
9.18 Thermal Initiation of Explosives ... 278
9.19 Adiabatic or Instantaneous Volume Thermal Explosion .. 282
References .. 285

10 Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives 291
 10.1 Non-ideal Explosives .. 291
 10.2 Non-ideal Explosive’s Evidence of Late-Time Energy Release 294
 10.3 Summary of Key Detonation Properties Due to Two Dimensional Flow in Right Circular Cylinders of Explosives ... 296
 10.4 Detonation Wave Velocity, Curvature and Failure Diameter Measurement Techniques ... 297
 10.5 Thin Foil Velocity Technique for Measuring CJ State of a Near-Ideal HE 303
 10.6 Navy Impedance Matching Technique for Measuring CJ State 305
 10.6.1 Simple Approximate Solution for Polytropic Parameter G from Navy Technique 307
 10.7 CJ States Defined by Determining JWL Equation of State for Near Ideal HE’s 309
 10.8 Orvis Line VISAR Technique with Very Good Temporal Resolution to Measure CJ Reaction Zone Length of a Near-Ideal HE ... 310
 10.9 1-D Experimental Technique for Determining Sonic Plane 316
 10.10 Significance of Experimental Measurements of Detonation Wave Properties 317
Shock Wave Compression of Condensed Matter
A Primer
Forbes, J.W.
2012, XIV, 374 p. 211 illus., 11 illus. in color., Hardcover
ISBN: 978-3-642-32534-2