Contents

1 Introduction to Shock Wave Physics of Condensed Matter 1
 1.1 Introduction 1
 1.2 General Assumptions 1
 1.3 Brief History of Shock Field in the United States of America . . . 2
 1.4 Practical Value of Shock Field 3
 1.5 Techniques for Producing 1-D Plane Shock Waves 4
 1.6 Dynamic Versus Static Compression 5
 1.7 Select Areas of Shock Wave Research 5
 1.8 What Does a Shock Wave in Condensed Matter Look Like? 6
 References .. 8

2 Plane One-Dimensional Shock Waves 13
 2.1 Definition of a Plane One-Dimensional Shock Wave 13
 2.1.1 A More Practical Definition for a Steady Shock Wave ... 13
 2.2 Practical Description of US, up, E, P and Disturbance Velocity ... 14
 2.3 Conservation Equations for a 1-D Plane Steady Shock Wave 16
 2.4 A Single Shock Wave Defines Only One (P, v) Point on a Hugoniot ... 18
 2.5 Two Plane Shock Waves 1-D Conservation Relations 20
 2.6 Wave Stability 21
 2.6.1 Necessary Condition for a Shock Wave to Form 22
 References .. 29

3 Impedance Matching Technique 31
 3.1 Waves Response to Material Interfaces and Intersection with Other Waves .. 31
 3.1.1 Practical Uses for Impedance Matching 31
 3.2 Distance-Time (x-t) Wave Propagation Diagrams 31
 3.3 Introduction to Principal P-u Curves with Initial State (P = 0, u = 0) ... 33
 3.4 Introduction to P-u Curve with Initial State (P1, u1) 34
 3.5 P-u Curves for Materials with US = A + buP 36
3.6 P-u Diagram for a Shock Crossing a Boundary into a Material of Higher Impedance 37
3.7 Impedance Matching Treatment of Rarefaction Waves 38
3.8 Impedance Matching for a Shock Reaching a Free Surface 39
3.9 Impedance Matching for a Flyer Plate Hitting a Stationary Plate of the Same Material 41
3.10 Disturbance Velocity in a 1-D Eulerian Cartesian Coordinate System Fixed in Space 42
3.10.1 Symmetric Impact Example 42
3.10.2 Disturbance Velocity for General Case 44
3.11 Impedance Matching for Four Basic Cases 45
3.12 Impedance Matching for Thin Foils 48
3.12.1 Summary of the Practical Lessons for Thin Foils 49
3.13 Impedance Matching for Multiple Waves Is an Approximation ... 52
3.14 Wave-Wave Interaction and Contact Discontinuity 53
References .. 57

4 Experimental Techniques .. 59
4.1 Selected Experimental Techniques to Measure Shock Wave Parameters ... 59
4.2 Explosive and Flyer Plate Shock Driver Systems 59
4.3 Laser Shock Drivers .. 62
4.4 Early Impedance Matching Experiments 63
4.5 Shock Velocity Measurements 64
4.6 Free Surface Velocity Measurement Using a Streak Camera 66
4.7 Electromagnetic Particle Velocity Gauge 67
4.8 Laser Velocity Interferometry 68
4.9 VISAR ... 68
4.10 ORVIS ... 69
4.11 Fabry-Perot ... 70
4.12 Heterodyne System ... 71
4.13 Optical Windows on Test Samples 72
4.14 Quartz Stress Gauge .. 72
4.15 Quartz Gauge Technique for Measuring Low Pressure Hugoniot .. 74
4.16 Quartz Gauge Technique for Measuring the Hugoniot of a Thin Material ... 75
4.17 Manganin Stress Gauge .. 75
4.18 Other Stress Gauges ... 78
4.19 Proton Radiography for Accurate Density Measurements of Shock Wave ... 80
4.20 Issues for Making Temperature Measurements Behind Shock Waves ... 80
4.21 Error Analysis for Experiments 82
4.22 Random Errors ... 83
4.23 Systematic Errors 85
4.24 Combining Random and Systematic Errors to Get Final Error ... 86
4.25 Example of Errors in Measurement of a Cylinders Density 86
4.26 Error Analysis for a Rotating Mirror Streak Camera Measurement of Free Surface Velocity 88
 4.26.1 Sources of Various Errors 89
 4.26.2 Errors in Trace Angle γ and Wave Tilt Angle ω 90
References .. 94

5 Thermodynamics of Shock Waves 101
5.1 Thermodynamics Review 101
5.2 Fundamental Thermodynamic Relation 102
5.3 Equations of State 103
5.4 Hugoniot Is Steeper than Isentrope from Same Initial State ... 105
5.5 Isentrope is Steeper than Isotherm from Same Initial State ... 106
5.6 Entropy Along Hugoniot 107
5.7 Isentrope and Hugoniot Are Same to Second Order in Compression at a Common (P, v) Point 109
5.8 Differential Equation for Hugoniots 110
5.9 Temperature at an Isentrope Point with $C_v \gamma/v$ Constant 111
5.10 Temperature at a Hugoniot Point for $C_v \gamma/v$ Constant 112
5.11 Calculation of Gruneisen Parameter at $(P = 0, v_0)$ from Thermodynamic Parameters and Sound Speed Values 114
5.12 Determination of Gruneisen Parameter from Shock Wave Release Velocity Measured at Peak Shock Pressure 115
5.13 Numerical Calculations of Isentropes and Isotherms from Hugoniot Data for C_v and γ/v Assumed Constant 116
5.14 Thermodynamic Consistent Surface 118
5.15 Complete Consistent Equation of State for Materials with a Constant C_v ... 120
5.16 Thermodynamic Surface Defined by Isotherm with a Constant C_v ... 122
5.17 Isentrope and Isotherm on the Thermodynamic Surface with C_v and γ/v Constant and Principal Hugoniot as the Reference Curve .. 130
5.18 Mie-Gruneisen Equation of State 133
5.19 Mie-Gruneisen Equation of State with $C_v \gamma/v$ Constant and Principal Hugoniot as the Reference Curve 134
5.20 Thermodynamics Impose Stringent Constraints on Use of the Gruneisen Equation of State With Hugoniot as Thermodynamic Reference Curve 135
5.21 Calculation of Hugoniot Where Initial Temperature Is Different than Principal Hugoniot’s with C_v and γ/v Assumed Constant ... 136
5.22 Recentered Hugoniots Using Gruneisen Equation of State with C_v and γ/v Constant 137
5.23 Determination of Volume Dependence of $\partial P/\partial T)_v$ or $\gamma(v)$... 139
References .. 144
8 First-Order Polymorphic and Melting Phase Transitions Under Shock Loading

8.1 Introduction .. 201
8.2 General Background of Polymorphism Under Shock Compression 203
8.3 Select Observed Transitions in Shocked Materials 203
8.4 Fast Reversible Phase Transition in Iron 206
 8.4.1 Evidence for Non-equilibrium Behavior in Mixed Phase Region of Iron ... 208
 8.4.2 Martensitic Phase Transition .. 209
8.5 Steady Shock Wave Profiles for Shock Compressed Thick Iron Samples 210
8.6 Experimental Rise-Time Measurements of the Steady Plastic II Shock in Polycrystalline Iron 212
8.7 Permanent Regime Theory for Rise-Time of a Steady Transmitted Shock Wave Front Where the Phase Transition Occurs and Material Strength Is Ignored 213
8.8 Time-Dependent Flow for Transmission Shock Waves in Iron for Thin Samples 217
8.9 Kinetics of Plastic I Shock Decay .. 222
8.10 Reverse Impact Experiments of Iron onto a VISAR Window 225
8.11 Fast Shock Induced Phase Transition in KCL with Two Measured Rates from Reverse Impact Experiments 226
8.12 Polymorphic Phase Transitions with Slow Transition Rates 228
8.13 Nucleation of Phase Transitions Under Shock Loading 229
8.14 Solid and Liquid Phase Thermodynamic Surface for Aluminum 232
8.15 Melting in Shocked Porous Aluminum 234
8.16 Shock Loading Porous Aluminum Along Metastable Extension of Solid Hugoniot Above the Solid Melt Line 236
8.17 Determination if Fully Compacted Aluminum Can Melt Under Pressure Release Down an Isentrope After Being Shock Loaded .. 237
References ... 238

9 Secondary Ideal High Explosives Non-steady Initiation Process and Steady Detonation Wave Models 243
9.1 Explosives .. 243
9.2 Secondary Explosives Initiation ... 245
9.3 High Pressure Shock Initiation of Homogeneous Explosives 247
9.4 Low Pressure Shock Initiation of Heterogeneous Explosives 247
9.5 High Pressure Shock Initiation of Heterogeneous Explosives 250
9.6 Phenomenological Energy Fluence Initiation Model 250
9.7 Phenomenological Reactive Flow Reaction Rate Models for Heterogeneous HE Initiation 252
9.8 Shock Sensitivity Tests ... 255
9.9 Steady 1-D Detonation Shock Waves in Near-Ideal Explosives .. 259
9.10 Chapman-Jouget (CJ) Detonation Model for Near Ideal High Explosives 261
9.10.1 Case 1 Initiation by Thick Driver Plate 262
9.10.2 Case 2 Initiation by Very Thin Flyer or a Booster HE with Its Initial Surface Free 262
9.11 CJ Detonation Model with Polytropic Equation of State for Gas Products 264
9.12 Peak Pressure Induced in Material by Explosive Using CJ Detonation Model 267
9.13 P-u Curves for Comp B Explosive Products Using Polytropic Gas Equation of State 269
9.14 Explosive Product Curves from JWL Equation of State .. 271
9.15 ZND Detonation Model ... 274
9.16 Detonation Spike Pressure Estimates 276
9.17 Pressure Drop Behind Detonation Spike .. 277
9.18 Thermal Initiation of Explosives .. 278
9.19 Adiabatic or Instantaneous Volume Thermal Explosion .. 282
References .. 285

10 Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives 291
10.1 Non-ideal Explosives ... 291
10.2 Non-ideal Explosive’s Evidence of Late-Time Energy Release .. 294
10.3 Summary of Key Detonation Properties Due to Two Dimensional Flow in Right Circular Cylinders of Explosives .. 296
10.4 Detonation Wave Velocity, Curvature and Failure Diameter Measurement Techniques 297
10.5 Thin Foil Velocity Technique for Measuring CJ State of a Near-Ideal HE 303
10.6 Navy Impedance Matching Technique for Measuring CJ State .. 305
10.6.1 Simple Approximate Solution for Polytropic Parameter G from Navy Technique 307
10.7 CJ States Defined by Determining JWL Equation of State for Near Ideal HE’s 309
10.8 Orvis Line VISAR Technique with Very Good Temporal Resolution to Measure CJ Reaction Zone Length of a Near-Ideal HE .. 310
10.9 1-D Experimental Technique for Determining Sonic Plane .. 316
10.10 Significance of Experimental Measurements of Detonation Wave Properties 317
Shock Wave Compression of Condensed Matter
A Primer
Forbes, J.W.
2012, XIV, 374 p. 211 illus., 11 illus. in color., Hardcover
ISBN: 978-3-642-32534-2