Contents

1 Introduction .. 1
 1.1 History of Superconductivity 1
 1.2 Introduction to Cuprates 4
 1.2.1 The Crystal Structure of Cuprates 4
 1.2.2 The Phase Diagram of Cuprates 5
 1.2.3 Electronic Structure of Cuprates [27] ... 7
 1.2.4 Summary to the Study of Cuprate Superconductors ... 9
 1.3 ARPES Study on Cuprate Superconductors 9
 1.3.1 The Fermi Surface of Bi2212 10
 1.3.2 ARPES Study on the Many-Body Effect of Cuprate Superconductors 10
 1.3.3 Superconducting Gap and Pseudogap by ARPES 12
 1.3.4 Summary to the Study of Cuprate Superconductors by ARPES 13
References ... 14

2 Angle-Resolved Photoemission Spectroscopy 19
 2.1 Introduction 19
 2.2 The Principle of ARPES [3] 19
 2.2.1 Brief Description of ARPES 20
 2.2.2 Single Particle Spectral Function 22
 2.3 Ultra-Violet Laser-Based ARPES 23
 2.3.1 VUV Laser Light Source 25
 2.3.2 Spectroscopy System 28
 2.3.3 Performance of the System [2] 32
 2.4 The Development of Spin-Resolved ARPES, Time-of-Flight ARPES and Tunable Laser ARPES Systems 38
 2.4.1 The Development of Spin-Resolved ARPES ... 39
 2.4.2 The Development of Time-of-Flight ARPES System 44
 2.4.3 Tunable Laser-Based ARPES System 46

xi
3 Growth of $\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Dy}_x\text{Cu}_2\text{O}_{8+\delta}$ Single Crystals

3.1 Introduction

Bi2212

3.2 Bi2212

3.3 Single Crystal Growth by the Traveling Solvent Floating Zone Method

- **3.3.1** Principle of TSFZ and TSFZ Furnace
- **3.3.2** Steps of Single Crystal Growth

3.4 Growth of $\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Dy}_x\text{Cu}_2\text{O}_{8+\delta}$ Single Crystals

3.5 Annealing of Bi2212 in High Pressure Oxygen

3.6 Summary

References

4 Nodal Electron Coupling in the $\text{Bi}_2\text{Sr}_2\text{Ca}_1\text{Cu}_2\text{O}_{8+\delta}$

4.1 Introduction

4.2 Experiments

4.3 Nodal Electronic State at Low Temperature

4.4 Momentum Dependence of the Dispersion and Self-energy

4.5 MDC Dispersion and the Quasiparticle Scattering Rate

4.6 Temperature Dependence of the Electron Self-energy

4.7 TheSuperconducting Sensitivity of Nodal Electronic State

4.8 Summary

References

5 High Energy Dispersion in $\text{Bi}_2\text{Sr}_2\text{Ca}_1\text{Cu}_2\text{O}_{8+\delta}$

5.1 Introduction

5.2 Tight-Binding Band Structure Calculation [23]

5.3 Electron-Phonon Coupling Simulation

5.4 Experiment

5.5 MDC and EDC Analysis

5.6 The ARPES Spectra in Nodal and Antinodal Region

5.7 The MDC and EDC Analysis

5.8 Summary

References

6 Normal Electron Self-energy and Pairing Self-energy in $\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_2\text{O}_8$

6.1 Introduction

6.2 The Simulation of the Single Particle Function in Superconducting State

6.3 The Particle-Hole Mixture Presented in MDC

6.4 Experiment

6.5 Particle-Hole Mixture at High Temperature

6.6 Direct Observation of Particle-Hole Mixture in MDC
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Extracting the Normal Electron Self-energy and Energy Gap Function</td>
<td>108</td>
</tr>
<tr>
<td>6.8</td>
<td>The Magic Crossing in the Temperature Dependence of MDC Dispersions</td>
<td>111</td>
</tr>
<tr>
<td>6.9</td>
<td>Summary</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>Superconducting Gap and Pseudogap in $\text{Bi}_2\text{Sr}_2\text{CaCu}2\text{O}{8+\delta}$</td>
<td>117</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The Superconducting Gap in Cuprates</td>
<td>117</td>
</tr>
<tr>
<td>7.1.2</td>
<td>The Pseudogap in Normal State</td>
<td>120</td>
</tr>
<tr>
<td>7.1.3</td>
<td>The Discrepancy of the Current Understanding on the Physics of Pseudogap</td>
<td>120</td>
</tr>
<tr>
<td>7.2</td>
<td>The Methods to Extract Energy Gap from ARPES Spectra</td>
<td>121</td>
</tr>
<tr>
<td>7.3</td>
<td>Experiment</td>
<td>124</td>
</tr>
<tr>
<td>7.4</td>
<td>The Momentum Dependence of Energy Gap in a Optimally Doped Bi2212</td>
<td>125</td>
</tr>
<tr>
<td>7.5</td>
<td>The Temperature Dependence of Energy Gap in Bi2212</td>
<td>127</td>
</tr>
<tr>
<td>7.6</td>
<td>Doping Dependence of Energy Gap on Fermi Surface</td>
<td>129</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>133</td>
</tr>
<tr>
<td>8</td>
<td>Summary</td>
<td>137</td>
</tr>
</tbody>
</table>
Photoemission Spectroscopy on High Temperature Superconductor
A Study of Bi2Sr2CaCu2O8 by Laser-Based Angle-Resolved Photoemission
Zhang, W.
2013, XVI, 140 p., Hardcover
ISBN: 978-3-642-32471-0