Chapter 2
Mechanisms and Fundamental Reactions

Masayuki Iwasaki and Yasushi Nishihara

Abstract It is widely accepted that the catalytic cycle of cross-coupling reactions of organometallic reagents with aryl halides catalyzed by transition metals consists of three fundamental processes: oxidative addition, transmetalation, and reductive elimination. Although the details of oxidative addition and reductive elimination have been extensively studied, little research on detailed mechanisms for transmetalation has been exploited until recently. In this chapter, recent examples of the transmetalation process (a transfer of organic groups to palladium) are generally outlined, vis-à-vis the intermediate complexes after transmetalation in Suzuki–Miyaura coupling and the effect of added copper salts in Migita–Kosugi–Stille coupling.

Keywords Reaction mechanism · Transmetalation · Suzuki–Miyaura coupling · Migita–Kosugi–Stille coupling · Copper effect

2.1 Transmetalation in Suzuki–Miyaura Coupling

The cross-coupling reactions of organometallic reagents with organic halides catalyzed by transition metals such as palladium and nickel are extremely useful and reliable methods for the construction of carbon–carbon bonds [1, 2]. The cross-coupling reactions can be applicable to a variety of organometallic compounds from Grignard reagents to organosilicon compounds. In particular, Suzuki–Miyaura coupling (as shown in Eq. 2.1) [3], using organoboron reagents
(especially organoboronic acids) with the aid of a base as an activator, is extensively utilized for the synthesis of natural products and biologically active substances. Suzuki–Miyaura coupling is also widely used for the production of functional organic materials with biaryl motifs in a variety of research fields. This versatility is due to: (1) the stability of organoboronic acids to water, air, and heat; (2) the high functional group tolerance of organoboron compounds; and (3) a lower toxicity of the boron-containing by-products produced by the reactions.

\[
\text{Ar}^1{-}\text{X} + \text{Ar}^2{-}\text{B(OH)}_2 \xrightarrow{\text{Pd cat. Base}} \text{Ar}^1{-}\text{Ar}^2
\]

(2.1)

However, unlike the more reactive Grignard and organozinc reagents, the transfer of the organic groups (transmetalation) from boron to the palladium center is limited by the poor nucleophilicity of organoboronic acids. In 1979, Suzuki and Miyaura disclosed that the addition of a base to the reaction system enhances transmetalation between organoboron reagents and palladium to undergo the reaction efficiently [4]. Since that time, Suzuki–Miyaura coupling has been significantly refined and has brought important technical improvements to the field of carbon–carbon bond formation.

Generally, the cross-coupling reactions are believed to occur through three fundamental steps: oxidative addition, transmetalation, and reductive elimination, in a catalytic cycle as shown in Scheme 2.1. In Suzuki–Miyaura coupling, as well as in other cross-coupling reactions, both the oxidative addition and reductive elimination stages have been well studied; on the other hand, the mechanisms of transmetalation involving an accelerating effect by the addition of bases have scarcely been examined until lately. Recently, many experimental and theoretical aspects of the transmetalation mechanisms in Suzuki–Miyaura coupling have been explored. Herein, the transmetalation step in Suzuki–Miyaura coupling is reviewed from the perspective of a series of cross-coupling reactions, examining the effects of the bases on transmetalation.

\[
\text{Ar}^1{-}\text{X} + \text{Ar}^2{-}\text{M} \xrightarrow{\text{Pd cat.}} \text{Ar}^1{-}\text{Ar}^2
\]

Scheme 2.1 A catalytic cycle of the palladium-catalyzed cross-coupling reactions
2.1.1 Stoichiometric Reactions of Suzuki–Miyaura Coupling

To provide mechanistic insight into the transmetalation, each stoichiometric reaction of Suzuki–Miyaura coupling is elucidated, as depicted in Scheme 2.2. Oxidative addition of organic halides to palladium is already known, and the formed halogeno(aryl)palladium(II) complexes can be isolated [5–9], whereas diarylpalladium(II) complexes as intermediates have not been isolated until recently due to spontaneous reductive elimination after transmetalation. Osakada has succeeded in the isolation and structural determination of the diarylpalladium(II) complexes after transmetalation by using arylboronic acids substituted with fluorine in the ortho position, leading to a retardation of the reductive elimination [10–12]. Upon heating of the isolated diarylpalladium(II) complexes, reductive elimination occurs smoothly to afford biaryls as cross-coupled products. These experimental results suggest that the rate-determining step in Suzuki–Miyaura coupling is transmetalation. Moreover, it is noteworthy that in this stoichiometric transmetalation reaction, the reaction does not occur at all when no Ag₂O additive is added.

Scheme 2.2 Three fundamental reactions
2.1.2 Base-Assisted Transmetalation

An accelerating effect on the transmetalation step of Suzuki–Miyaura coupling was observed when the bases were added to the reactions of halogeno(aryl)palladium(II) complexes with trialkylboranes or organoboronic acids. This is not seen in other types of cross-coupling reactions. Organoboronic acids are generally inert toward halogeno(aryl)palladium(II) complexes without any assistance of bases. However, highly nucleophilic organoborates can enhance transmetalation across halogeno(aryl)palladium(II) complexes without bases, and reductive elimination spontaneously follows to form the cross-coupled products, as shown in Eq. 2.2 [13–19].

\[
\text{R}^1-\text{X} + \text{R}^2-\text{B} \xrightarrow{\text{Pd cat.}} \text{No Base} \rightarrow \text{R}^1-\text{R}^2
\]

\[
\begin{array}{cccc}
[R-\text{C}≡\text{C-BR}_3]\text{Li} & [R_3\text{B-OMe}]\text{Na} & \text{R}_2\text{BLi} & [\text{Ar-BR}_3]\text{Li} \\
\text{Negishi} & \text{Suzuki and Miyaura} & \text{Suzuki and Miyaura} & \text{Suzuki and Miyaura} \\
[\text{Ar-B(R)(OR)}_2]\text{Li} & [\text{ArBF}_3]\text{K} & \text{Ph}_2\text{BNa} & [\text{ArB(OH)}_2]\text{Na} \\
\text{Kobayashi} & \text{Genêt} & \text{Bumagin (1999)} & \text{Cammidge} \\
\end{array}
\]

On the other hand, Suzuki and Miyaura have reported that when the oxo complexes such as methoxo-, hydroxo-, and acetoxopalladium complexes (Fig. 2.1) were used as the starting compounds, the transmetalation with boronic acids occurred smoothly even under neutral conditions [20, 21].

Fig. 2.1 Various oxopalladium complexes

Other examples of Suzuki–Miyaura coupling have been reported under neutral conditions by using the electrophiles shown in Fig. 2.2, because the oxopalladium complexes were immediately obtained by oxidative addition of these reagents [22–27]. In sharp contrast, oxidative addition of Ph₂IX, PhI(OH)OTf, or ArN₂BF₄ generates the cationic palladium species, which also rapidly undergo transmetalation without the addition of bases [28–31].
An example of the above-mentioned reactions, the Liebeskind–Srogl coupling, is shown in Scheme 2.3 [22]. The coupling reactions of the arylboronic acids with thioesters afforded the corresponding ketones under the palladium catalysis with the assistance of copper(I) 2-thiophenecarboxylate (CuTC) under neutral conditions. The reaction is thought to occur without the base because thiolatopalladium(II) complexes are converted into the carboxylatopalladium complexes by copper(I) carboxylates [32–42].

![Scheme 2.3](image)

Scheme 2.3 Reaction of arylboronic acids with thioesters
2.1.3 The Turnover Limiting Step in Suzuki–Miyaura Coupling

Transmetalation is believed to be the rate-determining step in most Suzuki–Miyaura couplings from the research on substituent effect of organic halides and organoboronic acids [43, 44]. This hypothesis is also supported from theoretical calculations; but, the presumption that transmetalation is the rate-determining step in all Suzuki–Miyaura couplings has become uncertain in recent years owing to the diversity of substrates and reaction conditions. For instance, Buchwald achieved cross-coupling reactions at room temperature by promoting transmetalation with sterically bulky phosphine ligands bearing biaryl backbones [45–47]. Furthermore, Fu reported that the less reactive alkyl chlorides can be used as electrophiles in Suzuki–Miyaura couplings [48]. Fu et al. proposed that the rate-determining step of these reactions is not transmetalation but oxidative addition. However, in most Suzuki–Miyaura couplings, under typical reaction conditions, transmetalation is the rate-controlling reaction in the catalytic cycle. Because a smooth transmetalation is essential for an efficient cross-coupling reaction, future investigation to improve this class of reactions should pay close attention to the transmetalation process. Brown compared the reaction rates by using arenes substituted with both triflates and bromides in a series of cross-coupling reactions. The results disclosed that the bromide chemoselectively reacted in Suzuki–Miyaura coupling, whereas the triflates preferentially reacted in Negishi, Kumada–Tamao–Corriu, and Migita–Kosugi–Stille couplings and Buchwald–Hartwig aminations (Scheme 2.4) [49]. It is clear that these very different results are ascribed to the transmetalation process in each coupling reaction, because the oxidative addition step is reversible [50].

![Scheme 2.4 Transformations of 3-bromophenyl triflate](image_url)
2.1.4 Pathways for Transmetalation

Two possible mechanisms of transmetalation in the base-accelerated Suzuki–Miyaura coupling can be considered. One involves the formation of the nucleophilic borates from the reactions of boronic acids with the added bases, which leads to a nucleophilic attack on the halogenopalladium(II) complexes (Scheme 2.5, Path A); the other contains a nucleophilic attack of the base (a hydroxyl ion) on halogenopalladium(II) complexes to generate the hydroxopalladium(II) intermediate, which further reacts with the neutral organoboron compounds to complete transmetalation (Scheme 2.5, Path B). Although to date there has been no definitive evidence to explain which transmetalation mechanism is correct, recently Hartwig et al. provided insight on the process [51].

Scheme 2.5 Two possible pathways of transmetalation in Suzuki-Miyaura coupling

First of all, Hartwig examined a series of stoichiometric reactions of isolated arylpalladium(II) complexes with several organoboron reagents; the results indicated that the respective reactions of an arylboronic acid with a hydroxopalladium(II) complex (Eq. 2.3) and of an arylborate with an iodopalladium complex (Eq. 2.4) are much faster than the net catalytic reaction (Eq. 2.5). Therefore, both of the mechanisms (Paths A and B) may be involved in the catalytic cycle of Suzuki–Miyaura coupling.

\[
Pd(PPh_3)_4 + \text{arlylboronic acid} + \text{halogenopalladium(II)} \rightarrow \text{arylborate} + \text{hydroxopalladium(II)} \]

(2.3)
Next, the concentrations of the boronic acid, the borate, the halogenopalladium(II), and the hydroxopalladium complexes were measured by monitoring the 31P and 11B NMR spectra in the reactions. As a result, it was found that the ratio between boronic acid and borate is 1:1 to 1:3 under general conditions, i.e., a slightly basic condition in the organic solvent containing water (Eq. 2.6).

It was also clarified that there was no difference in the ratio between iodopalladium and hydroxopalladium complexes at equilibrium (shown in Eq. 2.7).
Finally, the reaction rates of a boronic acid with a hydroxopalladium complex and of a borate with a bromopalladium complex were compared. When each reaction was monitored by 31P NMR, a rate constant for the reaction of a boronic acid and a hydroxopalladium complex was found to be 2.4×10^{-3} s$^{-1}$ (Eq. 2.8); whereas that of a bromopalladium complex and a potassium borate was 1.7×10^{-7} s$^{-1}$ (Eq. 2.9), giving rise to significantly different ratios by a factor of 1.4×10^{4}.

These experimental results thus indicate that the transmetalation progresses via Path B in Scheme 2.5. However, it is noteworthy that: (1) this experimental data cannot be applied to all of Suzuki–Miyaura reactions; (2) although weak bases such as carbonates and phosphates are used in most cases of Suzuki–Miyaura reactions, Path B would compete with Path A when stronger bases are employed, leading to the prior generation of the borates; and (3) these data do not reflect any detailed mechanism for a transfer of the organic groups from boron to palladium.

2.1.5 Computational Studies of the Transmetalation Step in Suzuki–Miyaura Coupling

The theoretical calculations for the mechanism of the transmetalation process in Suzuki–Miyaura coupling support the experimental evidence provided by
Hartwig [51]. Maseras has performed the DFT calculations and the energy profiles corresponding to Paths A and B are shown in Figs. 2.3 and 2.4, respectively [52]. The energy profile of the reaction of a bromopalladium complex with vinylborate shown in Fig. 2.3, indicates that transmetalation proceeds exothermically, and the largest activation barrier in this route is rather small at 4.2 kcal/mol. Therefore, this calculation result supports that the bromo(vinyl)palladium complex can react with vinylborate in a catalytic cycle.

On the other hand, Fig. 2.4 shows an energy profile for the reaction of vinylboronic acid with a hydroxo(vinyl)palladium(II) complex. This route is also exothermic, and the activation barrier was found to be only 0.6 kcal/mol. Comparison of the respective energy profiles for paths A and B, shown in Figs. 2.3 and 2.4, indicates that the energy of the transmetalation product TSC_3, divinyl-palladium(II) complex in Fig. 2.4, is much smaller. Therefore, path B is favored, which is consistent with the experimental outcomes by Hartwig.
In addition, Maseras calculated the direct reaction of a bromo(vinyl)palladium(II) complex with vinylboronic acid in the absence of the base. The most probable structures in this mechanism are shown in Fig. 2.5. This reaction pathway consists of the following processes: (1) a coordination of the double bond of the boronic acid to the palladium center; (2) a transfer of the bromide from palladium to boron; and (3) a transfer of the vinyl group from boron to palladium to generate the divinylpalladium complex. Calculated results shown in Fig. 2.5 suggest that this path is endothermic (31.6 kcal) and that there is a large energy barrier (39.3 kcal) from the intermediate I_{02} to the transition state T_{S02}. This result signifies that the direct transmetalation between the bromopalladium complex and boronic acid in the absence of a base does not occur, which is also supported by experimental data.

Fig. 2.4 An energy profile for Path B
2.1.6 An Interconversion Between Trifluoroborate and Boronic Acid

Very recently, Lloyd-Jones experimentally clarified that in Suzuki–Miyaura coupling of potassium trifluoroborate, hydrolysis of the trifluoroborate takes place to generate the corresponding boronic acid, which further reacts with a hydroxopalladium(II) complex (Scheme 2.6) [53]. This evidence indicates that the transmetalation of potassium trifluoroborate proceeds through Path B shown in Fig. 2.4.

Fig. 2.5 An energy profile for the reaction of a bromo(vinyl)palladium(II) complex with vinylboronic acid
In addition, the mechanism of Suzuki–Miyaura coupling was investigated by using different molar ratios of an arylborate $[D_0]$-1 and a deuterated arylboronic acid $[D_4]$-4 (Scheme 2.7). When the mixture of a 1:1 ratio of $[D_0]$-1 and $[D_4]$-4 was used, the formation of the deuterated cross-coupled product $[D_4]$-3 had a priority over $[D_0]$-3. Surprisingly, even when a 9:1 mixture of $[D_0]$-1 and $[D_4]$-4 was used, the deuterated product $[D_4]$-3 was obtained preferentially over $[D_0]$-3. These results indicate that trifluoroborates can be a precursor of the corresponding boronic acids in the presence of a base in water.

Amatore and Jutand experimentally proved that the reaction becomes slower as the concentration of the hydroxide ion increases in the reaction of phenylboronic acid with a bromopalladium complex, as shown in Scheme 2.8 [54]. This observation is consistent with the experimental results from Hartwig and Lloyd-Jones, considering that Path B becomes inferior as the concentration of borates increases over boronic acids (under stronger basic conditions).
Herein the effect of the added bases and possible reaction paths in the Suzuki–Miyaura coupling have been discussed. However, the results of experiments by Hartwig and calculations by Maseras must be interpreted carefully. First, the data shown herein are not applicable to all reaction systems using various transition metals/ligands. Second, under the reaction conditions that use a stronger base, Path A competes with Path B because the concentration of the existing borates increases in the reaction mixture. Overall, these results have greatly contributed to the understanding of the transmetalation process because in most cases Suzuki–Miyaura coupling employs relatively weak bases such as carbonates and phosphates.

2.2 The “Copper Effect” in Migita–Kosugi–Stille Coupling

The Migita–Kosugi–Stille coupling, the palladium-catalyzed coupling reactions of organotin reagents with organic halides, as well as Suzuki–Miyaura coupling, are very useful carbon–carbon bond-forming reactions (Eq. 2.10) [55–57].

\[
\begin{align*}
\text{Ar}^1-X + \text{Ar}^2-SnR_3 & \stackrel{\text{Pd cat.}}{\longrightarrow} \text{Ar}^1-\text{Ar}^2
\end{align*}
\]

(2.10)

2.2.1 A Cine Substitution Reaction

Mechanistic investigation of the Migita–Kosugi–Stille coupling has persisted since its discovery. The traditional cycle of oxidative addition, transmetalation, and reductive elimination, prevalent in transition metal catalyzed carbon–carbon bond-forming reactions, has been widely accepted. When the bulky alkenyltin reagents are employed, a side reaction, the cine substitution reaction, is observed due to slow transmetalation (Eq. 2.11) [58].

\[
\begin{align*}
\text{R}^1-X + \text{SnBu}_3 & \stackrel{\text{Pd cat.}}{\longrightarrow} \text{R}^1-\text{SnBu}_3 + \text{R}^2
\end{align*}
\]

(2.11)

\[\text{R}^1 = \text{aryl, vinyl; } X = \text{Cl, Br, I, OTf, OTs} \]
\[\text{R}^2 = \text{phenyl, alkyl, ester} \]
Kikukawa et al. found in 1986 that the reaction of ArN$_2$BF$_4$ with trialkyl(α-styryl)stannanes selectively produces the desired stereodefined (Z)-stilbene derivatives in high yields, not the α-arylated styrenes (Eq. 2.12) [59]. Due to slow transmetalation, this unexpected cine substitution reaction is observed in Migita–Kosugi–Stille coupling by using the bulky organotin reagents. In addition, it is reported that when an excess of diazonium salts are added, isomerization to the Z-stereoisomer becomes more substantial. The hydridopalladium complex plays an important role in this isomerization, which does not occur at all in the absence of the palladium catalyst.

\[
\text{Ar} - \overset{+}{\text{N}}_2\text{BF}_4 + \text{SnR}_3 \xrightarrow{\text{Pd(dba)$_2$}} \text{Ph} - \text{SnR}_3 \rightarrow \text{Ph} - \text{Ar} \]

(2.12)

\[\text{Ar} = \text{C}_6\text{H}_4\text{X}, \text{X} = \text{H}, 4-\text{Me}, 4-\text{I}, 4-\text{COMe}, 4-\text{CO}_2\text{Et}, 3-\text{NO}_2, 4-\text{NO}_2\]

\[\text{R} = \text{Me}, \text{Et}, \text{n-Bu}\]

At present, two different reaction mechanisms giving rise to the cine substitution products are postulated, as shown in Scheme 2.9. One is the addition–elimination mechanism (path a) and the other is via the palladium carbene complex (path b). In both mechanisms, the reaction starts from a regioselective addition of the arylpalladium complex to the double bond of the α-substituted alkenylstannane.

![Scheme 2.9 Two reaction pathways of the cine substitution reaction](image)

In the addition–elimination mechanism shown in Scheme 2.10, first carbopalladation occurs to the alkenylstannane regioselectively to generate intermediate 5. The carbon–carbon bond in 5 rotates to give the syn configuration, from which β-hydrogen elimination takes place. The hydridopalladium complex adds to the generated alkenylstannane at the opposite position to give intermediate 6. Finally, the Z-alkene is formed by the anti-elimination of a trialkylstannyl group and palladium, regenerating the catalyst [59]. However, definitive evidence to support this hypothesis has not been found to date, although many attempts to detect and identify the in situ formed alkenylstannanes have been made.
Another considered mechanism is via a palladium carbene complex. The regioselective insertion of an alkenylstannane into a carbon–palladium bond of the arylpalladium complex gives intermediate 7. Iodostannane is released by α-elimination from the four-centered transitional state to generate the palladium carbene complex 8. A 1,3-hydrogen shift from complex 8 forming the hydridopalladium complex 9 and the subsequent reductive elimination can afford the cine product (Scheme 2.11) [60]. The occurrence of the 1,3-hydrogen shift was confirmed by experiments with deuterated alkenyltin reagents.

2.2.2 The Copper Effect

Although many reaction condition variables (including electrophiles, solvents, ligands, additives, etc.) were evaluated to avoid the cine substitution reaction as a side reaction in Migita–Kosugi–Stille coupling, the improvements of the product yields were not attained. The use of the bulky alkenyltin compounds and the slow transmetalation contribute to the cine substitution reactions. Only acceleration of transmetalation, the rate-determining step, can enable the desired reaction. The unambiguous improvement of the ipso selectivity and an accelerating effect for transmetalation have been observed by adding copper iodide and other copper(I) salts (Eq. 2.13) [61–73].
In 1993, for example, Levin reported that the reaction takes place in the *ipso* selective manner in Migita–Kosugi–Stille coupling when the sterically bulky alkenyltin reagents are employed with the copper iodide as a co-catalyst; no formation of the *cine* substitution product was observed (Eq. 2.14) [74].

This so-called “copper effect” was researched first by Farina and Liebeskind [75]. They compared the reaction rates of the cross-coupling of vinyltributyltin with iodobenzene in the presence and in the absence of copper iodide. As a result, it has been disclosed that the reaction with the addition of copper iodide \((k_{obs} = 5.90 \times 10^{-3} \text{ min}^{-1}) \) is about 100 times faster than that without any copper additive \((k_{obs} = 2.66 \times 10^{-5} \text{ min}^{-1}) \) (Eq. 2.15).

The rate-determining step in Migita–Kosugi–Stille coupling is believed to be the transmetalation process based on recent research [76, 77]. Farina and Liebeskind explained the “copper effect” as follows. The added copper(I) salt traps the triphenylphosphine dissociated from the metal center in oxidative adduct 10 to generate the unsaturated palladium complex 11, and promotes the transmetalation process (Scheme 2.12). It is noteworthy that the added copper iodide does not promote the dissociation of the ligand from the oxidative adduct 10, but it traps the ligand dissociated after oxidative addition. Also, the addition of copper salts was reported to prevent the progress of the reverse reaction from 11 to 10.

\[
\text{without CuI: } k_{obs} = 2.66 \times 10^{-5} \text{ min}^{-1} \\
\text{with CuI: } k_{obs} = 5.90 \times 10^{-3} \text{ min}^{-1}
\]
The soft arsine ligands did not show any accelerating effect, compared with the harder phosphine ligands, as shown in Eq. 2.16. This is because copper iodide has a stronger interaction with phosphine ligands than with arsine ligands [78, 79]. Moreover, when Pd(AsPh₃)₄ is used as a catalyst, the association rate of free ligands to the metal center becomes slower than that observed in the case of Pd(PPh₃)₄.

\[
\text{C}_6\text{Cl}_2\text{F}_3\text{I} + \text{Bu}_3\text{Sn} \xrightarrow{\text{cat. trans-[Pd(C}_6\text{Cl}_2\text{F}_3\text{)](L)₂}} \text{C}_6\text{Cl}_2\text{F}_3\text{I} + \text{I-SnBu}_3
\]

(2.16)

It is known that the organic groups transmetalate from tin to copper in polar solvents (Scheme 2.13) [80]. The generation of tin halides was confirmed by measuring the \(^{119}\text{Sn}\) NMR in NMP as the solvent. The newly formed organocopper(I) species showed a higher activity of transmetalation to palladium than the corresponding organotin reagents. Therefore, the generated organocopper reagents take part in transmetalation in Migita–Kosugi–Stille coupling.

\[
\text{Ar}^2-\text{SnR}_3 \xrightarrow{\text{CuX}} \text{Ar}^2-\text{Cu} \xrightarrow{\text{X-SnR}_3} \text{Ar}^1-\text{Pd-X} \xrightarrow{\text{CuX}} \text{Ar}^1-\text{Pd-Ar}^2
\]

Scheme 2.13 Transmetalation from tin to copper

2.2.3 Perspectives

Clearly, there is an accelerating effect in Migita–Kosugi–Stille coupling when copper(I) salts are added. In the future, considering the effect of copper(I) salts, expanded use of Migita–Kosugi–Stille-type carbon(sp³)–carbon(sp³) bond-forming reactions is expected. These types of reactions are very challenging because alkyl electrophiles are undesirable for oxidative addition and the synchronous \(\beta\)-hydrogen elimination competitively takes place. However, unprecedented carbon(sp³)–carbon(sp³) couplings in the Migita–Kosugi–Stille reaction can be achieved by accelerating transmetalation, the rate-determining step, with the addition of copper(I) salts (Eq. 2.17).

\[
\text{C-X} + \text{R}_3\text{Sn-C} \xrightarrow{\text{Pd cat. CuX}} \text{C(sp³)-C(sp³) coupling}
\]

(2.17)
2.3 Summary

This chapter focuses on the transmetalation of Suzuki–Miyaura and Migita–Kosugi–Stille coupling reactions, the various pathways and the mechanisms involved, and the effect of the bases and of copper(I) salts. It has been concluded that the reactions of the arylboronic acids with a hydroxopalladium complex are much faster than that of arylborates with a halogenopalladium(II) complex from experimental and theoretical findings. However, it cannot be asserted that the mechanism in all Suzuki–Miyaura reactions has been proven because only the general reaction conditions have been examined at this present stage. In the future, it can be expected that further research on the mechanisms will develop from the studies clarified to date. This will lead to the development of more efficient cross-coupling reactions.

References

73. Wang Y, Burton J (2006) Copper(I)-only catalyzed reactions of (E)-2,3-difluoro-3-stannylacrylic ester with acid chlorides and mechanistic studies of the “copper effect” in Stille coupling reactions. Org Lett 8:1109–1111