Contents

Part I Lock-Based Synchronization

1 **The Mutual Exclusion Problem** .. 3
 1.1 Multiprocess Program ... 3
 1.1.1 The Concept of a Sequential Process. 3
 1.1.2 The Concept of a Multiprocess Program 4
 1.2 Process Synchronization .. 4
 1.2.1 Processors and Processes 4
 1.2.2 Synchronization ... 4
 1.2.3 Synchronization: Competition 5
 1.2.4 Synchronization: Cooperation 7
 1.2.5 The Aim of Synchronization
 Is to Preserve Invariants ... 7
 1.3 The Mutual Exclusion Problem ... 9
 1.3.1 The Mutual Exclusion Problem (Mutex) 9
 1.3.2 Lock Object ... 11
 1.3.3 Three Families of Solutions 12
 1.4 Summary ... 13
 1.5 Bibliographic Notes ... 13

2 **Solving Mutual Exclusion** ... 15
 2.1 Mutex Based on Atomic Read/Write Registers 15
 2.1.1 Atomic Register ... 15
 2.1.2 Mutex for Two Processes:
 An Incremental Construction 17
 2.1.3 A Two-Process Algorithm 19
 2.1.4 Mutex for \(n \) Processes:
 Generalizing the Previous Two-Process Algorithm 22
 2.1.5 Mutex for \(n \) Processes:
 A Tournament-Based Algorithm 26
 2.1.6 A Concurrency-Abortable Algorithm 29

Part II On the Foundations Side: The Atomicity Concept

4 **Atomicity: Formal Definition and Properties** 113
 4.1 Introduction ... 113
 4.2 Computation Model ... 115
 4.2.1 Processes and Operations 115
 4.2.2 Objects .. 116
 4.2.3 Histories .. 117
 4.2.4 Sequential History. 119
 4.3 Atomicity ... 120
 4.3.1 Legal History .. 120
 4.3.2 The Case of Complete Histories 121
 4.3.3 The Case of Partial Histories 123
 4.4 Object Composability and Guaranteed Termination Property 125
 4.4.1 Atomic Objects Compose for Free 125
 4.4.2 Guaranteed Termination 127
 4.5 Alternatives to Atomicity 128
 4.5.1 Sequential Consistency 128
 4.5.2 Serializability .. 130
 4.6 Summary ... 131
 4.7 Bibliographic Notes ... 132

Part III Mutex-Free Synchronization

5 **Mutex-Free Concurrent Objects** .. 135
 5.1 Mutex-Freedom and Progress Conditions 135
 5.1.1 The Mutex-Freedom Notion 135
 5.1.2 Progress Conditions 137
 5.1.3 Non-blocking with Respect to Wait-Freedom 140
 5.2 Mutex-Free Concurrent Objects 140
 5.2.1 The Splitter: A Simple Wait-Free Object from Read/Write Registers ... 140
 5.2.2 A Simple Obstruction-Free Object from Read/Write Registers ... 143
 5.2.3 A Remark on Compare&Swap: The ABA Problem 145
 5.2.4 A Non-blocking Queue Based on Read/Write Registers and Compare&Swap ... 146
 5.2.5 A Non-blocking Stack Based on Compare&Swap Registers ... 150
 5.2.6 A Wait-Free Stack Based on Fetch&Add and Swap Registers ... 152
5.3 Boosting Obstruction-Freedom to Stronger Progress in the Read/Write Model .. 155
5.3.1 Failure Detectors .. 155
5.3.2 Contention Managers for Obstruction-Free Object Implementations .. 157
5.3.3 Boosting Obstruction-Freedom to Non-blocking ... 158
5.3.4 Boosting Obstruction-Freedom to Wait-Freedom ... 159
5.3.5 Mutex-Freedom Versus Loops Inside a Contention Manager Operation .. 161
5.4 Summary ... 162
5.5 Bibliographic Notes .. 162
5.6 Exercises and Problems ... 163

6 Hybrid Concurrent Objects .. 165
6.1 The Notion of a Hybrid Implementation 165
6.1.1 Lock-Based Versus Mutex-Free Operation: Static Hybrid Implementation .. 166
6.1.2 Contention Sensitive (or Dynamic Hybrid) Implementation ... 166
6.1.3 The Case of Process Crashes 166
6.2 A Static Hybrid Implementation of a Concurrent Set Object .. 167
6.2.1 Definition and Assumptions 167
6.2.2 Internal Representation and Operation Implementation ... 167
6.2.3 Properties of the Implementation 171
6.3 Contention-Sensitive Implementations 172
6.3.1 Contention-Sensitive Binary Consensus 172
6.3.2 A Contention Sensitive Non-blocking Double-Ended Queue .. 176
6.4 The Notion of an Abortable Object 181
6.4.1 Concurrency-Abortable Object 181
6.4.2 From a Non-blocking Abortable Object to a Starvation-Free Object ... 183
6.5 Summary ... 186
6.6 Bibliographic Notes .. 186
6.7 Exercises and Problems ... 187

7 Wait-Free Objects from Read/Write Registers Only 189
7.1 A Wait-Free Weak Counter for Infinitely Many Processes ... 189
7.1.1 A Simple Counter Object 190
7.1.2 Weak Counter Object for Infinitely Many Processes ... 191
7.1.3 A One-Shot Weak Counter Wait-Free Algorithm 193
7.1.4 Proof of the One-Shot Implementation 194
7.1.5 A Multi-Shot Weak Counter Wait-Free Algorithm 199
7.2 Store-Collect Object ... 201
 7.2.1 Store-Collect Object: Definition 201
 7.2.2 An Adaptive Store-Collect Implementation 204
 7.2.3 Proof and Cost of the Adaptive Implementation 208
7.3 Fast Store-Collect Object 211
 7.3.1 Fast Store-Collect Object: Definition 211
 7.3.2 A Fast Algorithm for the store_collect() Operation ... 212
 7.3.3 Proof of the Fast Store-Collect Algorithm 215
7.4 Summary ... 217
7.5 Bibliographic Notes .. 217
7.6 Problem .. 218

8 Snapshot Objects from Read/Write Registers Only 219
 8.1 Snapshot Objects: Definition 219
 8.2 Single-Writer Snapshot Object 220
 8.2.1 An Obstruction-Free Implementation 221
 8.2.2 From Obstruction-Freedom to Bounded Wait-Freedom ... 223
 8.2.3 One-Shot Single-Writer Snapshot Object:
 Containment Property 227
 8.3 Single-Writer Snapshot Object with Infinitely Many Processes ... 228
 8.4 Multi-Writer Snapshot Object 230
 8.4.1 The Strong Freshness Property 231
 8.4.2 An Implementation of a Multi-Writer Snapshot Object .. 231
 8.4.3 Proof of the Implementation 234
 8.5 Immediate Snapshot Objects 238
 8.5.1 One-Shot Immediate Snapshot Object: Definition 238
 8.5.2 One-Shot Immediate Snapshot Versus One-Shot Snapshot .. 238
 8.5.3 An Implementation of One-Shot Immediate Snapshot Objects ... 240
 8.5.4 A Recursive Implementation of a One-Shot Immediate Snapshot Object 244
 8.6 Summary ... 247
 8.7 Bibliographic Notes .. 247
 8.8 Problem .. 248
9 Renaming Objects from Read/Write Registers Only

9.1 Renaming Objects
9.1.1 The Base Renaming Problem
9.1.2 One-Shot Renaming Object
9.1.3 Adaptive Implementations
9.1.4 A Fundamental Result
9.1.5 Long-Lived Renaming

9.2 Non-triviality of the Renaming Problem

9.3 A Splitter-Based Optimal Time-Adaptive Implementation

9.4 A Snapshot-Based Optimal Size-Adaptive Implementation
9.4.1 A Snapshot-Based Implementation
9.4.2 Proof of the Implementation

9.5 Recursive Store-Collect-Based Size-Adaptive Implementation
9.5.1 A Recursive Renaming Algorithm
9.5.2 An Example
9.5.3 Proof of the Renaming Implementation

9.6 Variant of the Previous Recursion-Based Renaming Algorithm
9.6.1 A Renaming Implementation Based on Immediate Snapshot Objects
9.6.2 An Example of a Renaming Execution

9.7 Long-Lived Perfect Renaming Based on Test&Set Registers
9.7.1 Perfect Adaptive Renaming
9.7.2 Perfect Long-Lived Test&Set-Based Renaming

9.8 Summary
9.9 Bibliographic Notes
9.10 Exercises and Problems

Part IV The Transactional Memory Approach

10 Transactional Memory

10.1 What Are Software Transactional Memories
10.1.1 Transactions = High-Level Synchronization
10.1.2 At the Programming Level

10.2 STM System
10.2.1 Speculative Executions, Commit and Abort of a Transaction
10.2.2 An STM Consistency Condition: Opacity
10.2.3 An STM Interface
10.2.4 Incremental Reads and Deferred Updates
11.4 Three Unbounded Constructions

11.4.1 SWSR Registers: From Unbounded Regular to Atomic

11.4.2 Atomic Registers: From Unbounded SWSR to SWMR

11.4.3 Atomic Registers: From Unbounded SWMR to MWMR

11.5 Summary

11.6 Bibliographic Notes

12 From Safe Bits to Atomic Bits: Lower Bound and Optimal Construction

12.1 A Lower Bound Theorem

12.1.1 Two Preliminary Lemmas

12.1.2 The Lower Bound Theorem

12.2 A Construction of an Atomic Bit from Three Safe Bits

12.2.1 Base Architecture of the Construction

12.2.2 Underlying Principle and Signaling Scheme

12.2.3 The Algorithm Implementing the Operation $R\text{.write}(\cdot)$

12.2.4 The Algorithm Implementing the Operation $R\text{.read}(\cdot)$

12.2.5 Cost of the Construction

12.3 Proof of the Construction of an Atomic Bit

12.3.1 A Preliminary Theorem

12.3.2 Proof of the Construction

12.4 Summary

12.5 Bibliographic Notes

12.6 Exercise

13 Bounded Constructions of Atomic b-Valued Registers

13.1 Introduction

13.2 A Collision-Free (Pure Buffers) Construction

13.2.1 Internal Representation of the Atomic b-Valued Register R

13.2.2 Underlying Principle: Two-Level Switch to Ensure Collision-Free Accesses to Buffers

13.2.3 The Algorithms Implementing the Operations $R\text{.write}(\cdot)$ and $R\text{.read}(\cdot)$

13.2.4 Proof of the Construction: Collision-Freedom

13.2.5 Correctness Proof

13.3 A Construction Based on Impure Buffers

13.3.1 Internal Representation of the Atomic b-Valued Register R
13.3.2 An Incremental Construction 358
13.3.3 The Algorithms Implementing
the Operations $R.\text{write}()$ and $R.\text{read}()$ 360
13.3.4 Proof of the Construction 360
13.3.5 From SWSR to SWMR b-Valued
Atomic Register .. 367
13.4 Summary ... 368
13.5 Bibliographic Notes 368

Part VI On the Foundations Side:
The Computability Power of Concurrent Objects (Consensus)

14 Universality of Consensus 371
14.1 Universal Object, Universal Construction,
and Consensus Object 371
14.1.1 Universal (Synchronization) Object
and Universal Construction 371
14.1.2 The Notion of a Consensus Object 372
14.2 Inputs and Base Principles of Universal Constructions .. 373
14.2.1 The Specification of the Constructed Object 373
14.2.2 Base Principles of Universal Constructions 374
14.3 An Unbounded Wait-Free Universal Construction 374
14.3.1 Principles and Description of the Construction .. 375
14.3.2 Proof of the Construction 378
14.3.3 Non-deterministic Objects 382
14.3.4 Wait-Freedom Versus Bounded Wait-Freedom ... 383
14.4 A Bounded Wait-Free Universal Construction 384
14.4.1 Principles of the Construction 384
14.4.2 Proof of the Construction 388
14.4.3 Non-deterministic Objects 391
14.5 From Binary Consensus to Multi-Valued Consensus ... 391
14.5.1 A Construction Based on the Bit Representation
of Proposed Values 392
14.5.2 A Construction for Unbounded Proposed Values .. 394
14.6 Summary .. 395
14.7 Bibliographic Notes 396
14.8 Exercises and Problems 396

15 The Case of Unreliable Base Objects 399
15.1 Responsive Versus Non-responsive Crash Failures 400
15.2 SWSR Registers Prone to Crash Failures 400
15.2.1 Reliable Register When Crash Failures Are Responsive: An Unbounded Construction 401
16.6 Hierarchy of Atomic Objects 443
16.6.1 From Consensus Numbers to a Hierarchy 443
16.6.2 On Fault Masking 444
16.6.3 Robustness of the Hierarchy 445
16.7 Summary ... 445
16.8 Bibliographic Notes 445
16.9 Exercises and Problems 446

17 The Alpha(s) and Omega of Consensus:
Failure Detector-Based Consensus 449
17.1 De-constructing Compare&Swap 450
17.2 A Liveness-Oriented Abstraction: The Failure Detector Ω 452
 17.2.1 Definition of Ω 452
 17.2.2 Ω-Based Consensus:
 Ω as a Resource Allocator or a Scheduler 453
17.3 Three Safety-Oriented Abstractions:
 Alpha_1, Alpha_2, and Alpha_3 454
 17.3.1 A Round-Free Abstraction: Alpha_1 454
 17.3.2 A Round-Based Abstraction: Alpha_2 455
 17.3.3 Another Round-Free Abstraction: Alpha_3 456
 17.3.4 The Rounds Seen as a Resource 457
17.4 Ω-Based Consensus 457
 17.4.1 Consensus from Alpha_1 Objects and Ω 457
 17.4.2 Consensus from an Alpha_2 Object and Ω 459
 17.4.3 Consensus from an Alpha_3 Object and Ω 460
 17.4.4 When the Eventual Leader Elected by Ω
 Does Not Participate 463
 17.4.5 The Notion of an Indulgent Algorithm 464
 17.4.6 Consensus Object Versus Ω 464
17.5 Wait-Free Implementations of the Alpha_1 and Alpha_2
Abstractions ... 465
 17.5.1 Alpha_1 from Atomic Registers 465
 17.5.2 Alpha_2 from Regular Registers 467
17.6 Wait-Free Implementations of the Alpha_2 Abstraction
 from Shared Disks 472
 17.6.1 Alpha_2 from Unreliable Read/Write Disks 472
 17.6.2 Alpha_2 from Active Disks 476
17.7 Implementing Ω 477
 17.7.1 The Additional Timing Assumption EWB 478
 17.7.2 An EWB-Based Implementation of Ω 479
 17.7.3 Proof of the Construction 481
 17.7.4 Discussion 484
Concurrent Programming: Algorithms, Principles, and Foundations
Raynal, M.
2013, XXXII, 516 p., Hardcover
ISBN: 978-3-642-32026-2