Contents

1 The Wrist Joint 1
 1.1 Anatomy of the Wrist Joint 1
 1.2 Bone Structure 3
 1.3 Cartilage Structure 4
 1.4 Ligament Structure 7
 1.5 Kinematics .. 8
 References ... 11

2 Biomechanical Properties and Behaviours of the Wrist Joint 13
 2.1 Contact Surfaces and Load Transmission 13
 2.2 Biomechanical Consideration of the Cartilage Structure ... 14
 2.3 Biomechanical Consideration of the Ligamentous Structure ... 15
 2.4 Current Trends in Biomechanical Modelling 17
 2.4.1 Rigid Body Spring Method 17
 2.4.2 Finite Element Method 17
 References ... 22

3 The Wrist Joint Affected by Rheumatoid Arthritis 25
 3.1 Pathology .. 25
 3.2 Rheumatoid Arthritis 26
 3.3 Treatment .. 30
 References ... 31

4 Finite Element Modelling of the Healthy Wrist Joint 33
 4.1 Bone Model Reconstruction 33
 4.2 Modelling of Cartilages 39
 4.3 Modelling of Ligaments 39
 References ... 40
5 Finite Element Analysis of the Wrist Joint Affected by Rheumatoid Arthritis

5.1 Finite Element Model Construction of the Rheumatic Wrist

5.1.1 Simulation of Cartilage Destruction

5.1.2 Simulation of Loss of Carpal Height

5.1.3 Simulation of Dislocation of the Carpus in the Ulnar Direction

5.1.4 Simulation of Dislocation of the Proximal Carpal Row in the Palmar and Ulnar Directions

5.1.5 Simulation of Scapholunate Dissociation and Scapholunate Advanced Collapse

5.1.6 Simulation of Dislocation of the Scaphoid in the Palmar Direction

5.1.7 Simulation of Hand Scoliosis

5.1.8 Simulation of Reduction of Contact Between the Lunate and the Radius

5.1.9 Simulation of Bone Erosion

5.2 Finite Element Analysis: Pre-Processing Procedures

5.3 Biomechanical Behaviours of the Rheumatic Wrist Joint

5.3.1 Comparative Analysis

5.3.2 The Biomechanical Effect of Symptoms and Pathophysiological Characteristics

References

6 Finite Element Analysis of the Wrist Arthroplasty in Rheumatoid Arthritis

6.1 Total Wrist Arthroplasty

6.2 Finite Element Modelling of the Total Wrist Arthroplasty

6.3 Finite Element Analysis: Pre-Processing Procedures

6.4 Finite Element Analysis

6.4.1 Mechanical Stress Distribution Within the Bones

6.4.2 Mechanical Contact Pressure Within the Bones

6.4.3 Biomechanical Analysis of Different Moduli of Bone Graft

6.4.4 Biomechanical Assessment of the Total Wrist Arthroplasty Procedure

References

Summary

Index
Computational Biomechanics of the Wrist Joint
Nazri Bajuri, M.; Abdul Kadir, M.R.
2013, XI, 74 p. 43 illus., Softcover
ISBN: 978-3-642-31905-1