Contents

1 Introduction .. 1
1.1 Historical Earthquake Events ... 1
1.2 Consequences of Earthquakes .. 5
1.3 Benefits of Earthquakes .. 18
1.4 Causes of Earthquakes ... 19
1.4.1 Tectonic-Related Earthquakes and the Elastic
 Rebound Theory .. 20
1.4.2 Volcanic Earthquakes .. 25
1.4.3 Human Induced/Triggered Earthquakes 27
1.4.4 Ice Induced Earthquakes .. 33
1.5 Faults .. 34
1.6 Tectonic Plate Boundaries and Fault Zones 40
1.6.1 Spreading Zones ... 41
1.6.2 Subduction Zones .. 44
1.6.3 Transform Fault Zones ... 48
1.6.4 Intraplates ... 49
1.6.5 Relation of Plate Boundaries with Earthquake
 Occurrences ... 51
1.7 Earthquake Mitigation Measures and Modern Earthquake
 Engineering .. 52
1.8 Earthquake Prediction and Forecast 56
1.8.1 Earthquake Prediction .. 56
1.8.2 Earthquake Forecast ... 59
1.8.3 The Social and Economic Impact of Earthquake
 Predictions .. 59
1.9 Motivations of Offshore Earthquake Engineering 61
1.10 Closing Remarks .. 68
References ... 68
2 Offshore Structures Versus Land-Based Structures 73
 2.1 Introduction to Offshore Structures 73
 2.1.1 Offshore Platforms .. 73
 2.1.2 Offshore Wind Turbine Substructures and Foundations 81
 2.2 Accounting of Dynamics in the Concept Design of Structures 87
 2.2.1 Dynamics Versus Statics .. 87
 2.2.2 Characteristics of Dynamic Responses 92
 2.2.3 Frequency Range of Dynamic Loading 97
 2.3 Difference Between Offshore and Land-Based Structures 102
References ... 106

3 Characterize Ground Motions .. 107
 3.1 Definition of Earthquake Locations 107
 3.2 Seismic Waves .. 107
 3.2.1 Body Waves ... 108
 3.2.2 Surface Waves .. 113
 3.2.3 Guided Waves .. 117
 3.3 Measuring Seismic Motions Using Seismogram 119
 3.3.1 Measurement Using Seismograph 119
 3.3.2 Torsional Seismic Motions 124
 3.4 Magnitude and Intensity .. 124
 3.4.1 Magnitude .. 125
 3.4.2 Intensity Categories ... 134
 3.5 Non-stationary and Peak Ground Motions 137
 3.5.1 Peak Ground Motions and Its Relationship with Magnitude and Intensity .. 137
 3.5.2 Contribution of Body and Surface Wave to Ground Motions 140
 3.5.3 Moving Resonance .. 141
 3.6 Attenuation Relationship and Uncertainties 142
 3.7 Duration of Ground Motions .. 152
 3.7.1 Effects of Ground Motion Durations 152
 3.7.2 Definition of Ground Motion Duration 154
 3.7.3 Approximation of Ground Motion Duration 157
 3.8 Source of Ground Motion Recording Data 162
References ... 162

4 Determination of Site Specific Earthquake Ground Motions 169
 4.1 From Fault Rupture to Seismic Design 169
 4.2 Site Period ... 175
 4.2.1 General ... 175
 4.2.2 Influence of Soil Depth on the Site Period 179
4.3 Site Response and Soil–Structure Interactions .. 182
 4.3.1 General .. 182
 4.3.2 Kinematic Interaction .. 185
 4.3.3 Subgrade Impedances and Damping .. 186
 4.3.4 Inertial Interaction ... 186
 4.3.5 Effects of Soil–Structure Interaction ... 187
 4.3.6 Characteristics of Site Responses .. 188
 4.3.7 Effects of Topographic and Subsurface Irregularities 190
 4.3.8 Applicability of One-, Two-, and Three-Dimensional Site Response Analysis .. 194
 4.3.9 Linear, Equivalent Linear or Non-linear Soil Modeling 195
 4.3.10 Location to Input Seismic Motions for a Site Response Analysis. .. 197
4.4 Water Column Effects on Vertical Ground Excitations 197
References .. 198

5 Representation of Earthquake Ground Motions .. 203
 5.1 General .. 203
 5.2 Earthquake Excitations Versus Dynamic Ocean Wave, Wind, and Ice Loading .. 204
 5.3 Power Spectrum of Seismic Ground Motions 207
 5.3.1 Introduction to Fourier and Power Spectrum 207
 5.3.2 Power Spectrum of Seismic Ground Motions 215
 5.4 Response Spectrum .. 218
 5.4.1 Background .. 218
 5.4.2 Elastic Response and Design Spectrum 220
 5.4.3 Ductility-Modified (Inelastic) Design Spectrum Method 239
 5.4.4 Vertical Response Spectrum ... 245
 5.5 Time History Method ... 249
 5.5.1 General Method ... 249
 5.5.2 Drift Phenomenon and Its Correction .. 250
 5.6 Wavelet Transform Method .. 254
References .. 261

6 Determining Response Spectra by Design Codes 267
 6.1 General .. 267
 6.2 Code Based Simplified Method for Calculating the Response Spectrum .. 268
 6.2.1 Construction of Design Spectrum in Eurocode 8 for Land-Based Structure .. 269
6.2.2 Construction of Design Spectrum in ISO 19901 and Norsok for Offshore Structures .. 272
References .. 280

7 Record Selection for Performing Site Specific Response Analysis ... 281
7.1 General ... 281
7.2 Selections of Motion Recordings .. 282
7.3 Modification of the Recordings to Fit into the Design Rock Spectrum ... 283
7.3.1 Direct Scaling ... 283
7.3.2 Spectrum/Spectral Matching ... 283
7.3.3 Pros and Cons of Direct Scaling and Spectrum Matching 287
7.4 Performing the Site Response Analysis Using Modified/Matched Recordings .. 288
References .. 290

8 Spatial Varied (Asynchronous) Ground Motion ... 293
8.1 General ... 293
8.2 Cross-Covariance, Cross-Spectra Density Function and Coherence Function ... 297
8.2.1 Cross-Covariance in Time Domain ... 297
8.2.2 Cross-Spectra Density in the Frequency Domain 298
8.2.3 Coherence Function in the Frequency Domain 298
8.3 Simulation of SVEGM .. 300
8.4 Effects of SVEGM ... 304
References .. 308

9 Seismic Hazard and Risk Assessment ... 311
9.1 Seismic Hazard Analysis ... 311
9.1.1 Introduction .. 311
9.1.2 Deterministic Seismic Hazard Analysis (DSHA) 313
9.1.3 Probabilistic Seismic Hazard Analysis (PSHA) 315
9.1.4 Deaggregation (Disaggregation) in PSHA for Multiple Sources ... 332
9.1.5 Logic Tree Method ... 336
9.2 Seismic Hazard Map ... 338
9.3 Apply PSHA for Engineering Design .. 342
9.4 Conditional Mean Spectrum .. 346
9.5 Forecasting “Unpredictable” Extremes—Dragon-Kings 351
9.6 Assessing Earthquake Disaster Assisted by Satellite Remote Sensing ... 353
9.7 Seismic Risk .. 354
References .. 356
10 Influence of Hydrodynamic Forces and Ice During Earthquakes

10.1 Hydrodynamic Forces

10.1.1 Introduction to Hydrodynamic Force Calculation

10.1.2 Effects of Drag Forces

10.1.3 Effects and Determination of Added Mass

10.1.4 Effects of Buoyancy

10.1.5 Effects and Modeling of Marine Growth

10.2 Effects of Ice

10.2.1 General

10.2.2 Effects of Ice–Structure Interaction on the Seismic Response of Structures

10.2.3 Icing and Its Effects

References

11 Shock Wave Due to Seaquakes

11.1 Introduction

11.2 Simplified Model for Simulating Seaquakes

11.3 Case Study by Kiyokawa

References

12 Introduction to Tsunamis

12.1 Cause of Tsunamis

12.2 History and Consequences of Tsunamis

12.3 Characterizing Tsunami Size

12.4 Calculation of Tsunami Waves

12.4.1 Tsunami Generation at Source

12.4.2 Tsunami Propagation in Ocean

12.4.3 Tsunami Run-up (Shoaling) at Coastal Areas and Sloped Beach

12.4.4 Shallow Water Wave Theory

12.5 Tsunami Induced Load on Structures Located in Shallow Water and Coastal Areas

12.6 Structural Resistance Due to Tsunami

12.7 Mitigation of Tsunami Hazard

References

13 Earthquake Damages

13.1 General

13.2 Structural and Foundation Damage

13.3 Soil Liquefaction

13.3.1 General

13.3.2 Assessment of Liquefaction

13.3.3 Mitigation Measures of Soil Liquefaction
13.4 Landslides .. 421
 13.4.1 General ... 421
 13.4.2 Assessment of Regional Landslide Potential
 by Arias Intensity .. 423
13.5 Human Body Safety and Motion Induced Interruptions 424
 13.5.1 General ... 424
 13.5.2 Remedial Measures with Regard to Human Body
 Safety .. 425
 13.5.3 Motion Induced Interruptions 426
13.6 Structural Damage Measures 427
 13.6.1 Basic Parameters for Damage Measures 427
 13.6.2 Damage Indices 428
References ... 429

14 Design Philosophy ... 433
 14.1 General .. 433
 14.2 Prescriptive Code Design 436
 14.2.1 Introduction 436
 14.2.2 Limit States Design 437
 14.2.3 Allowable Stress Design 439
 14.2.4 Plastic Design 441
 14.2.5 Load and Resistance Factor Design 442
 14.2.6 Levels of Reliability Method 457
 14.2.7 ASD Versus LRFD 458
 14.2.8 Development of Seismic Design Codes 459
 14.2.9 Hierarchy of Codes and Standards 460
 14.3 Introduction to Performance-Based Design 462
 14.3.1 Limitations of Traditional Prescriptive
 Code Design ... 462
 14.3.2 Introduction to Performance-Based Design 463
 14.3.3 Performance-Based Design for Structures 466
 14.3.4 Introduction to Practical Methods for PBD 467
References ... 468

15 Seismic Analysis and Response of Structures 471
 15.1 General .. 471
 15.2 Traditional Seismic Analysis Methods 472
 15.2.1 Introduction 472
 15.2.2 Simplified Static Seismic Coefficient Method 476
 15.2.3 Random Vibration Analysis 478
 15.2.4 Response Spectrum Analysis 478
 15.2.5 Non-linear Static Pushover Analysis 487
 15.2.6 Non-linear Dynamic Time Domain Analysis 495
 15.2.7 Case Studies 497
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.8</td>
<td>Response Difference Between Response Spectrum and Non-linear Dynamic Time Domain Analysis</td>
</tr>
<tr>
<td>15.3</td>
<td>Selection of Principal Directions in Seismic Analysis</td>
</tr>
<tr>
<td>15.4</td>
<td>Recently Developed Methods</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Incremental Dynamic Analysis</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Endurance Time Analysis</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Critical Excitation Method</td>
</tr>
<tr>
<td>15.5</td>
<td>Characteristics of Seismic Responses</td>
</tr>
<tr>
<td>15.6</td>
<td>Seismic Transient Excited Vibrations</td>
</tr>
<tr>
<td>15.7</td>
<td>Whipping Effect</td>
</tr>
<tr>
<td>15.7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>15.7.2</td>
<td>Investigation of the Whipping Effect for a Jacket and Topside Structure</td>
</tr>
<tr>
<td>15.7.3</td>
<td>Investigation of the Whipping Effect for a GBS and Topside Structure</td>
</tr>
<tr>
<td>15.7.4</td>
<td>Investigation of the Whipping Effect for a Tower-Podium System</td>
</tr>
<tr>
<td>15.7.5</td>
<td>Documented Observations of Whipping Responses</td>
</tr>
<tr>
<td>15.7.6</td>
<td>Mitigation of Whipping Response</td>
</tr>
<tr>
<td>15.8</td>
<td>Influences from Structures’ Orientations</td>
</tr>
<tr>
<td>15.9</td>
<td>Remarks on Modeling of Material Properties for Seismic Analysis</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

16 Sudden Subsidence and Its Assessment

16.1 General

16.2 Structural Assessment

16.2.1 Simplified Static Approach

16.2.2 Dynamic Time History Approach

16.3 Case Studies

16.3.1 Case Study 1: Response of Topside Bridges and Modules Due to Sudden Subsidence

16.3.2 Case Study 2: Response of a Topside Flare Boom Due to Sudden Subsidence

17 Tank Liquid Impact

17.1 General

17.2 Tank Damages Due to Earthquakes

17.3 Calculation of Hydrodynamic Forces Due to Tank Impact

17.3.1 Fluid–Tank Interaction in Horizontal Direction

17.3.2 Effects of Flexibility of Tank Walls

17.3.3 Fluid–Tank Interaction in the Vertical Direction

17.3.4 Implementation of Fluid Modeling in Finite Element Analysis
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Soil-Tank Interaction</td>
<td>584</td>
</tr>
<tr>
<td>17.5</td>
<td>Codes and Standards for Seismic Tank Design</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>585</td>
</tr>
<tr>
<td>18</td>
<td>Selection of Computer System and Computation Precision</td>
<td>589</td>
</tr>
<tr>
<td>18.1</td>
<td>General</td>
<td>589</td>
</tr>
<tr>
<td>18.2</td>
<td>Computer System for Improving Numerical Analysis Efficiency</td>
<td>589</td>
</tr>
<tr>
<td>18.3</td>
<td>Computation Precision</td>
<td>593</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>594</td>
</tr>
<tr>
<td>19</td>
<td>Avoid Dynamic Amplifications</td>
<td>595</td>
</tr>
<tr>
<td>19.1</td>
<td>Seismic Design Principles</td>
<td>595</td>
</tr>
<tr>
<td>19.2</td>
<td>Stiffness and Mass Distribution</td>
<td>598</td>
</tr>
<tr>
<td>19.3</td>
<td>Elevation Control</td>
<td>599</td>
</tr>
<tr>
<td>19.4</td>
<td>Dynamic Magnification Due to Torsional Effects</td>
<td>605</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Introduction</td>
<td>605</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Mitigation Measures</td>
<td>606</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Accounting for Torsional Effects</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>610</td>
</tr>
<tr>
<td>20</td>
<td>Ductility Through Structural Configuration and Local Detailing</td>
<td>613</td>
</tr>
<tr>
<td>20.1</td>
<td>Steel Brace Frames</td>
<td>613</td>
</tr>
<tr>
<td>20.2</td>
<td>Buckling-Restrained Brace Frame</td>
<td>621</td>
</tr>
<tr>
<td>20.3</td>
<td>Moment Resisting Frame</td>
<td>623</td>
</tr>
<tr>
<td>20.4</td>
<td>Shear Walls</td>
<td>625</td>
</tr>
<tr>
<td>20.5</td>
<td>Eccentrically Braced Frame</td>
<td>627</td>
</tr>
<tr>
<td>20.6</td>
<td>Local Structural Detailing</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>631</td>
</tr>
<tr>
<td>21</td>
<td>Damping</td>
<td>633</td>
</tr>
<tr>
<td>21.1</td>
<td>General</td>
<td>633</td>
</tr>
<tr>
<td>21.2</td>
<td>Damping Apparatus</td>
<td>635</td>
</tr>
<tr>
<td>21.3</td>
<td>Equivalent Viscous Damping</td>
<td>636</td>
</tr>
<tr>
<td>21.4</td>
<td>Relationship Among Various Expressions of Damping</td>
<td>637</td>
</tr>
<tr>
<td>21.5</td>
<td>Practical Damping Modeling for Dynamic Analysis</td>
<td>638</td>
</tr>
<tr>
<td>21.5.1</td>
<td>Modal Damping</td>
<td>638</td>
</tr>
<tr>
<td>21.5.2</td>
<td>Rayleigh Damping</td>
<td>639</td>
</tr>
<tr>
<td>21.5.3</td>
<td>Caughey Damping</td>
<td>640</td>
</tr>
<tr>
<td>21.5.4</td>
<td>Non-proportional Damping</td>
<td>641</td>
</tr>
<tr>
<td>21.6</td>
<td>Damping Levels for Engineering Structures</td>
<td>642</td>
</tr>
<tr>
<td>21.6.1</td>
<td>Material Damping</td>
<td>642</td>
</tr>
<tr>
<td>21.6.2</td>
<td>Structural/Slip Damping</td>
<td>643</td>
</tr>
<tr>
<td>21.6.3</td>
<td>System Damping</td>
<td>644</td>
</tr>
</tbody>
</table>
22 Direct Damping Apparatus .. 647
22.1 Introduction .. 647
22.2 Viscous Damper ... 650
 22.2.1 Introduction 650
 22.2.2 Advantages and Drawbacks of Viscous Dampers 653
 22.2.3 Engineering Applications of Viscous Dampers 654
22.3 Viscous Damping Walls 657
22.4 Cyclic Responses Among Structural Members Made of
 Elastic, Viscous and Hysteretic (Viscoelastic) Materials . 659
22.5 Viscoelastic Damper 661
 22.5.1 General 661
 22.5.2 Design of Viscoelastic Dampers 663
 22.5.3 Engineering Applications of Viscoelastic Dampers . 666
22.6 Friction Damper .. 666
 22.6.1 Introduction to Friction Dampers 666
 22.6.2 Pall Friction Damper 667
 22.6.3 Other Types of Friction Dampers 670
 22.6.4 Pros and Cons of Friction Dampers 676
 22.6.5 Modeling of Friction Dampers 678
 22.6.6 Design of Friction Dampers 678
 22.6.7 Engineering Applications of Friction Dampers 681
22.7 Yielding Damper 682
 22.7.1 General 682
 22.7.2 Types of Yielding Dampers 682
 22.7.3 Engineering Applications of Yielding Dampers 690
22.8 Lead Dampers .. 692
22.9 Shape Memory Alloy Dampers 693
22.10 Comparison of Structural Behavior Among Conventional
 Structures and Structures with Different Damping Apparatus
 Installed ... 696
 References .. 698

23 Base and Hanging Isolation System 703
23.1 General ... 703
23.2 Dynamic Analysis of Base Isolation System 705
23.3 Elastomeric Bearings 707
 23.3.1 General 707
 23.3.2 Simplified Calculation of Rubber Bearings’
 Properties ... 711
 23.3.3 Compression and Tension Capacity of Rubber
 Bearings .. 714
 References .. 718
23.3.4 Determination of Damping in Rubber Bearings 714
23.3.5 Design of Elastomeric Bearings 715
23.3.6 Advantages and Drawbacks 717
23.3.7 Engineering Applications 718
23.3.8 Performance of Elastomeric Bearings During Real Earthquake Events 722
23.4 Sliding Isolation Systems 724
 23.4.1 General 724
 23.4.2 Determination of Basic Properties for Sliding Isolation Systems 726
 23.4.3 Design of Sliding Isolation Systems 728
 23.4.4 Advantages and Drawbacks of Sliding Isolation Systems 729
 23.4.5 Engineering Applications 730
23.5 Testing of Base Isolation System 733
23.6 Selection and System Comparison Among Conventional Design, Base Isolation and Damping Apparatus 734
23.7 Hanging Isolation System 736
References .. 738

24 Dynamic Absorber ... 743
 24.1 General .. 743
 24.2 Dynamic Responses Due to the Installation of Dynamic Absorbers 746
 24.3 Design Procedure for an Optimized Dynamic Absorber 748
 24.4 Practical Considerations for Designing a Dynamic Absorber 750
 24.5 Tuned Mass Damper (TMD) 750
 24.5.1 General 750
 24.5.2 Advantages and Drawbacks of TMDs 753
 24.5.3 Engineering Applications 753
 24.5.4 Research of TMD Systems 758
 24.6 Tuned Liquid Damper (TLD) 759
 24.6.1 General 759
 24.6.2 Calculation of Structural Response with TSDs Installed 761
 24.6.3 Research Progress of TLDs 763
 24.6.4 Advantages and Drawbacks of TLDs 767
 24.6.5 Engineering Applications of TLDs 769
 24.7 Multifrequency Dynamic Absorber 772
 24.8 Impact Dampers 774
 24.8.1 General 774
 24.8.2 Advantages and Drawbacks of Impact Dampers 776
 24.8.3 Engineering Applications of Impact Dampers 776
References .. 779
25 Load and Energy Sharing Mechanism .. 783
 25.1 General .. 783
 25.2 Connecting to Adjacent Structures............................. 783
 25.3 Lock-up and Shock Transmission Unit 785
References .. 788
26 Resistance of Non-structural Components 789
References .. 793
27 Structural Health Monitoring and Earthquake Insurance 795
 27.1 Introduction ... 795
 27.2 Vibration-Based SHM 797
 27.3 Drone Based Structural Inspections 799
 27.4 Inspections by Remotely Unmanned Underwater Vehicles 803
 27.5 Earthquake Insurance 805
References .. 806
28 Control Techniques for External Damping Devices 809
 28.1 Introduction ... 809
 28.2 Passive Control Devices 809
 28.3 Semi-active and Active Control Devices 811
 28.4 Hybrid Control Devices 812
References .. 812
29 Seismic Rehabilitation for Structures 815
 29.1 General .. 815
 29.2 Seismic Rehabilitation Measures 815
 29.3 Strengthening of Structures 816
 29.4 Reinforcement of Structural Members 822
 29.4.1 Local Joint Reinforcement for Tubular Structures 822
 29.4.2 Sticking Steel Reinforcement 824
 29.4.3 Adding Members, Enlarging Cross Sections and Shortening Spans 824
 29.4.4 Retrofitting Using Fiber-Reinforced-Polymer (FRP) 826
 29.4.5 Load Sequence Effects Due to the Reinforcement 832
 29.4.6 External Pre-stressing Using FRP 833
References .. 835
Appendix .. 837
Index ... 839
Modern Earthquake Engineering
Offshore and Land-based Structures
Jia, J.
2017, XXV, 848 p. 559 illus., 12 illus. in color., Hardcover
ISBN: 978-3-642-31853-5