Contents

1 Introduction ... 1
 1.1 Novel Sensing Materials ... 1
 1.1.1 Carbon Nanotubes: Structure and Properties of Carbon Nanotubes 2
 1.1.2 Synthesis of CNTs ... 16
 1.1.3 CNT Purification Methods 20
 1.2 Carbon Nanotubes as Platforms for Electrochemical and Electronic Biosensors 21
 1.2.1 Solid Electrodes .. 21
 1.2.2 CNT Platforms ... 22
 1.3 Electrochemical and Electronic Applications of CNT Electrodes 36
 1.3.1 Electrochemical Actuators and Electrochemical Energy-Harvesting Devices 36
 1.3.2 Biosensors .. 37
 1.4 Characterizing the Biosensor Devices 51
 1.4.1 Methods of Detection: Electrochemical and Electronic Biorecognition Processes 51
 1.4.2 Surface Characterization: SEM, TEM, AFM .. 61
 1.4.3 Other Characterization Techniques: Raman, XPS ... 68
References ... 71

2 Objectives ... 79
 2.1 To Study the Use of Carbon Nanotubes as Electrochemical Transducers and the Relation Between Their Structure and Their Electrochemical Reactivity 79
 2.2 To Study the Use of Carbon Nanotubes as a Suitable Platform for Detecting Biorecognition Events and the Use of Electrochemistry as a Signature of the Carbon Nanotube Functionalization and Sensing ... 80
 2.3 To Optimize the Carbon Nanotube-Field Effect Transistor Layout for Real-Time Monitoring of Biorecognition Processes ... 81
3 Experimental ... 83
 3.1 Preparation of Carbon Working Electrodes 83
 3.1.1 CNT Purification ... 83
 3.1.2 Epoxy Composite Electrodes 84
 3.1.3 CNT-Glassy Carbon .. 87
 3.1.4 Polishing .. 88
 3.2 Towards the Design, Fabrication and Optimization of Other
 CNT Platforms .. 89
 3.2.1 High Density Vertically Aligned CNT
 Macroelectrodes .. 89
 3.2.2 High Density Vertically Aligned CNT
 Microelectrode Arrays 89
 3.2.3 CNT-Ultramicroelectrode Arrays (CNT-UMAs) 91
 3.2.4 Carbon Nanotube Field-Effect Transistor (CNT-FET) 99
 3.3 Procedures for CNT-Functionalization 103
 3.3.1 Electrode Modification 103
 3.4 Materials and Equipment .. 111
 3.4.1 Methods of Detection: Electrochemical
 and Electronic Biorecognition Processes 111
 3.4.2 Materials for Preparation of Carbon Working Electrodes ... 112
 3.4.3 Electrode Modification for Biorecognition Events 114
 3.5 Additional Equipment .. 115
 3.5.1 Growth of Carbon Nanotubes 115
 3.5.2 Characterization Techniques 115
References .. 116

4 Results and Discussion: Impact of Nanotechnology in Sensors 119
References .. 121

5 Results and Discussion: Response of Different Carbon
 Platforms as Electrochemical Transducers 123
 5.1 General Conclusions of Response of Different Carbon
 Platforms as Electrochemical Transducers 130
References .. 131

6 Results and Discussion: Biorecognition Processes on
 Different CNT Platforms .. 133
 6.1 Iron Protein-Based Amperometric Biosensors
 (Myoglobin and Catalase Response) 133
 6.1.1 Direct Electrochemistry 134
 6.1.2 Electrocatalytic Activity 138
 6.1.3 General Conclusions of Iron Protein-Based
 Amperometric Biosensors 149
6.2 Direct (Label-Free) Electrochemical DNA-Detection 149
 6.2.1 Electrochemical Detection of DNA by Oxidation of the DNA Bases 150
 6.2.2 Electrochemical Detection of DNA Hybridization by Using Reversible Redox Indicators 152
 6.2.3 General Conclusions of Direct (Label-Free) DNA-Detection 161

6.3 Aptamers as a Molecular Recognition Elements for Impedimetric Protein Detection 162
 6.3.1 Functionalization Scheme of the Aptasensor .. 163
 6.3.2 Sensor Response to the Aptamer Activation and Non-specific Adsorption 166
 6.3.3 Aptasensor Response to Ionic Strength and pH .. 168
 6.3.4 Electroanalytical Parameters of the Aptasensor .. 171
 6.3.5 General Conclusions of the Impedimetric Protein Detection with CNT-Based Aptasensors 173

6.4 UMAs a Step Forward for Ultrasensitive Detection 174
 6.4.1 General Conclusions of CNT Ultramicroelectrode Arrays for Ultrasensitive Detection 176

References .. 176

7 Results and Discussion: Electronic Response of Carbon Nanotube Field-Effect Transistors to Biorecognition Processes .. 179
 7.1 Electronic Detection in a Field-Effect Transistor Configuration in Aqueous Environment 179
 7.1.1 Passivation Protocol of the CNT-FET Device ... 181
 7.2 CNT-FET Layout for Monitoring Protein Adsorption .. 184
 7.3 Label-Free Electrical Detection of Proteins: FET-Aptasensors ... 186
 7.4 General Conclusions of the Electric Response of Carbon Nanotube Field-Effect Transistors 192

References .. 192

8 Conclusions .. 193
 8.1 General Conclusions ... 193
 8.2 Specific Conclusions ... 194
 8.2.1 To Study the Use of Carbon Nanotubes as Electrochemical Transducers and the Relation Between Their Structure and Their Electrochemical Reactivity 194
8.2.2 To Study the Use of Carbon Nanotubes as a Suitable Platform for Detecting Biorecognition Events and the Use of Electrochemistry as a Signature of Carbon Nanotube Functionalization and Sensing 195

8.2.3 To Optimize Carbon Nanotube-Field Effect Transistor (CNT-FET) Layout for Following up in Real Time a Biorecognition Process ... 197

9 Perspectives .. 199
 9.1 Perspectives in Fundamental Electrochemical Issues 199
 9.2 Perspectives in the Electrode Configurations 200
 9.3 Perspectives in the Biorecognition Elements
 Discussed in this Thesis .. 201

Index .. 203
Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction
Pacios Pujadó, M.
2012, XX, 208 p., Hardcover
ISBN: 978-3-642-31420-9