Contents

1 Volatility Processes ... 1
 1.1 Brownian Motion ... 1
 1.2 Geometric Brownian Motion 6
 1.3 Long-Time Behavior of Marginal Distributions 8
 1.4 Ornstein–Uhlenbeck Processes 10
 1.5 Ornstein–Uhlenbeck Processes and Time-Changed Brownian Motions ... 12
 1.6 Absolute Value of an Ornstein–Uhlenbeck Process 13
 1.7 Squared Bessel Processes and CIR Processes 14
 1.8 Squared Bessel Processes and Sums of the Squares of Independent Brownian Motions 15
 1.9 Chi-Square Distributions 17
 1.10 Noncentral Chi-Square Distributions 18
 1.11 Marginal Distributions of Squared Bessel Processes. Formulations ... 22
 1.12 Laplace Transforms of Marginal Distributions 23
 1.13 Marginal Distributions of Squared Bessel Processes. Proofs ... 27
 1.14 Time-Changed Squared Bessel Processes and CIR Processes ... 29
 1.15 Marginal Distributions of CIR Processes 32
 1.16 Ornstein–Uhlenbeck Processes and CIR Processes 34
 1.17 Notes and References 35

2 Stock Price Models with Stochastic Volatility 37
 2.1 Stochastic Volatility 37
 2.2 Correlated Stochastic Volatility Models 38
 2.3 Hull–White, Stein–Stein, and Heston Models 42
 2.4 Relations Between Stock Price Densities in Stein–Stein and Heston Models ... 44
 2.5 Girsanov’s Theorem .. 46
 2.6 Risk-Neutral Measures .. 48
 2.7 Risk-Neutral Measures for Uncorrelated Hull–White Models ... 52
2.8 Local Times for Semimartingales	53
2.9 Risk-Neutral Measures for Uncorrelated Stein–Stein Models	54
2.10 Risk-Neutral Measures for Uncorrelated Heston Models	57
2.11 Hull–White Models. Complications with Correlations	61
2.12 Heston Models and Stein–Stein Models. No Complications with Correlations	63
2.13 Notes and References	65
3 Realized Volatility and Mixing Distributions	67
3.1 Asymptotic Relations Between Functions	67
3.2 Mixing Distributions and Stock Price Distributions	68
3.3 Stock Price Densities in Uncorrelated Models as Mixtures of Black–Scholes Densities	70
3.4 Mixing Distributions and Heston Models	71
3.5 Mixing Distributions and Hull–White Models with Driftless Volatility	73
3.6 Mixing Distributions and Hull–White Models	73
3.7 Mixing Distributions and Stein–Stein Models	74
3.8 Notes and References	75
4 Integral Transforms of Distribution Densities	77
4.1 Geometric Brownian Motions and Laplace Transforms of Mixing Distributions	77
4.2 Bougerol’s Identity in Law	80
4.3 Squared Bessel Processes and Laplace Transforms of Mixing Distributions	81
4.4 CIR Processes and Laplace Transforms of Mixing Distributions	85
4.5 Ornstein–Uhlenbeck Processes and Laplace Transforms of Mixing Distributions	90
4.6 Hull–White Models with Driftless Volatility and Hartman–Watson Distributions	99
4.7 Mixing Density and Stock Price Density in the Correlated Hull–White Model	101
4.8 Mellin Transform of the Stock Price Density in the Correlated Heston Model	102
4.9 Mellin Transform of the Stock Price Density in the Correlated Stein–Stein Model	104
4.10 Notes and References	107
5 Asymptotic Analysis of Mixing Distributions	109
5.1 Asymptotic Inversion of the Laplace Transform	110
5.2 Asymptotic Behavior of Fractional Integrals	114
5.3 Asymptotic Behavior of Integral Operators with Log-Normal Kernels	118
5.4 Asymptotic Formulas for Mixing Distribution Densities	122
Associated with Geometric Brownian Motions	122
5.4.1 Hypergeometric Functions .. 133
5.4.2 Dufresne’s Theorems ... 136
5.4.3 Exponential, Beta, and Gamma Distributions 141
5.4.4 Proof of Formula (5.77) for $r \neq 0$ 142
5.4.5 Dufresne’s Recurrence Formula 144
5.4.6 Equivalent Formulation of Dufresne’s Recurrence Formula ... 145
5.4.7 Completion of the Proof of Theorem 5.9 147
5.5 Asymptotic Behavior of Mixing Distribution Densities Near Zero ... 149
5.6 Asymptotic Formulas for Mixing Distribution Densities Associated with CIR Processes 150
5.7 Asymptotic Formulas for Mixing Distribution Densities Associated with Ornstein–Uhlenbeck Processes 158
5.8 Constants in Asymptotic Formulas. Simplifications 164
5.9 Notes and References .. 165

6 Asymptotic Analysis of Stock Price Distributions 167
6.1 Asymptotic Formulas for Stock Price Densities in Heston Models ... 167
6.1.1 Heston Models as Affine Models and Moment Explosions ... 168
6.1.2 Saddle Point Method and Mellin Inversion 173
6.1.3 Finding the Saddle Point .. 176
6.1.4 Local Expansion Around the Saddle Point 177
6.1.5 Saddle Point Approximation of the Density 177
6.1.6 Tail Estimates .. 178
6.1.7 Explicit Formula for the Constant A_1 182
6.2 Asymptotic Formulas for Stock Price Densities in Uncorrelated Heston Models ... 185
6.3 The Constants A_1, A_2 and A_3 Obtained by Different Methods Are Equal ... 187
6.4 Asymptotic Formulas for Stock Price Densities in Stein–Stein Models ... 192
6.5 Asymptotic Formulas for Stock Price Densities in Uncorrelated Hull–White Models 195
6.6 Comparison of Stock Price Densities 197
6.7 The Constants A_3 and B_3 198
6.8 Notes and References .. 198

7 Regularly Varying Functions and Pareto-Type Distributions 201
7.1 Regularly Varying Functions 201
7.2 Class R_{-1} and Regularly Varying Majorants of Integrable Monotone Functions ... 206
7.3 Fractional Integrals of Regularly Varying Functions 212
7.4 Slowly Varying Functions with Remainder 214
Contents

7.5 Smoothly Varying Functions .. 216
7.6 Pareto-Type Distributions .. 220
7.7 Pareto-Type Distributions in Stochastic Volatility Models 222
7.8 Notes and References ... 224

8 Asymptotic Analysis of Option Pricing Functions 227
8.1 Call and Put Pricing Functions in Stochastic Asset Price Models .. 227
8.2 The Black–Scholes Model .. 233
8.3 Black–Scholes Formulas .. 234
8.4 Derivatives of Option Pricing Functions 236
8.5 Asymptotic Behavior of Pricing Functions in Stochastic Volatility Models .. 238
8.6 Notes and References ... 241

9 Asymptotic Analysis of Implied Volatility 243
9.1 Implied Volatility in General Option Pricing Models 243
9.2 Implied Volatility Surfaces and Static Arbitrage 244
9.3 Asymptotic Behavior of Implied Volatility Near Infinity 249
9.4 Corollaries ... 252
9.5 Extra Terms: First-Order Asymptotic Formulas for Implied Volatility .. 255
9.6 Extra Terms: Higher-Order Asymptotic Formulas for Implied Volatility .. 258
9.7 Symmetries and Asymptotic Behavior of Implied Volatility Near Zero .. 263
9.8 Symmetric Models .. 265
9.9 Asymptotic Behavior of Implied Volatility for Small Strikes ... 270
9.10 Notes and References ... 272

10 More Formulas for Implied Volatility 273
10.1 Moment Formulas .. 273
10.2 Tail-Wing Formulas ... 278
10.3 Tail-Wing Formulas with Error Estimates 281
10.4 Regularly Varying Stock Price Densities and Tail-Wing Formulas .. 284
10.5 Implied Volatility in Stochastic Volatility Models 285
10.6 Asymptotic Equivalence and Moment Formulas 288
10.7 Implied Volatility in Mixed Models 293
10.8 Asset Price Models with Jumps 297
10.9 Volatility Smile .. 303
10.10 Gatheral’s SVI Parameterization of Implied Variance 310
10.11 Notes and References ... 313

11 Implied Volatility in Models Without Moment Explosions 315
11.1 General Asymptotic Formulas in Models Without Moment Explosions .. 315
11.2 Constant Elasticity of Variance Model .. 320
11.3 Displaced Diffusion Model ... 323
11.4 Finite Moment Log-Stable Model .. 325
11.5 Piterbarg’s Conjecture ... 328
11.6 Asymptotic Equivalence and Piterbarg’s Conjecture 335
11.7 SV1 and SV2 Models of Rogers and Veraart 338
11.8 Notes and References ... 345

References .. 347

Index .. 357
Analytically Tractable Stochastic Stock Price Models
Gulisashvili, A.
2012, XVIII, 362 p., Hardcover
ISBN: 978-3-642-31213-7