Contents

Part I Main Principles and Laws of Motion of an Ideal Fluid

1 Equations of Motion of an Ideal Incompressible Fluid; Kelvin’s Circulation Theorem ... 3
 1.1 What is an Incompressible Fluid? 3
 1.2 Equations of Motion of an Ideal Incompressible Fluid 4
 1.3 Kelvin’s Circulation Theorem 7
 1.4 Exercises .. 10
References ... 11

2 Potential Vorticity and the Conservation Laws of Energy and Momentum for a Stratified Incompressible Fluid 13
 2.1 Potential Vorticity of a Stratified Incompressible Fluid 13
 2.2 The Bernoulli Equation ... 16
 2.3 Why do Planes Fly? .. 17
 2.4 Conservation Laws for the Momentum and Energy of an Incompressible Fluid ... 18
 2.5 Exercise ... 21
References ... 21

3 Helicity; Equations of Gas Dynamics; The Ertel Invariant 23
 3.1 The Helicity Invariant ... 23
 3.2 Equations of Gas Dynamics or Equations of an Ideal Compressible Fluid .. 25
 3.3 Isentropic Motion of a Compressible Fluid 27
 3.4 The Kelvin Theorem and the Bernoulli Integral in Gas Dynamics ... 28
 3.5 Exercises ... 30
References ... 30

4 The Rossby–Obukhov Potential Vortex; Energy and Momentum of a Compressible Fluid; Hydrodynamic Approximation of Equations of Gas Dynamics ... 31
 4.1 The Rossby–Obukhov Potential Vortex in Shallow-Water Theory ... 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Conservation Laws and Fluxes of Energy and Momentum in Compressible Fluids</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>The Speed of Sound</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Hydrodynamic Approximation of the Equations of Gas Dynamics</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Exercises</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Part II Quasi-geostrophic Approximations of the Equations of Motion of Rotating Barotropic and Baroclinic Fluids</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Equations of Motion of a Rotating Fluid; The Notion of a Geophysical Flow</td>
<td>43</td>
</tr>
<tr>
<td>5.1</td>
<td>Preliminary Remarks</td>
<td>43</td>
</tr>
<tr>
<td>5.2</td>
<td>Equations of Motion for a Rotating Fluid</td>
<td>44</td>
</tr>
<tr>
<td>5.3</td>
<td>Notion of a Geophysical Flow as a Hydrodynamical Object</td>
<td>47</td>
</tr>
<tr>
<td>5.4</td>
<td>Exercises</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>What is Geophysical Hydrodynamics?</td>
<td>51</td>
</tr>
<tr>
<td>6.1</td>
<td>The Obukhov–Charney Basis</td>
<td>51</td>
</tr>
<tr>
<td>6.2</td>
<td>Fundamental Properties of Geophysical Flows</td>
<td>53</td>
</tr>
<tr>
<td>6.3</td>
<td>“Shallow-Water” Theory for a Rotating Ideal Fluid of Constant Density</td>
<td>57</td>
</tr>
<tr>
<td>6.4</td>
<td>Exercises</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>The Obukhov–Charney Equation; Rossby Waves</td>
<td>61</td>
</tr>
<tr>
<td>7.1</td>
<td>Quasi-geostrophic Approximation of the Conservation Equation for Potential Vorticity</td>
<td>61</td>
</tr>
<tr>
<td>7.2</td>
<td>Generalization to the Case of a Barotropic Fluid</td>
<td>63</td>
</tr>
<tr>
<td>7.3</td>
<td>Fundamental Invariants of Motion</td>
<td>64</td>
</tr>
<tr>
<td>7.4</td>
<td>Rossby Waves</td>
<td>65</td>
</tr>
<tr>
<td>7.5</td>
<td>Exercises</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Resonant Interaction of Rossby Waves; Helmholtz and Obukhov Singular Vortices; The Kirchhoff Equations</td>
<td>71</td>
</tr>
<tr>
<td>8.1</td>
<td>Group Velocity of Rossby Waves</td>
<td>71</td>
</tr>
<tr>
<td>8.2</td>
<td>Resonant Interaction of Planetary Waves</td>
<td>72</td>
</tr>
<tr>
<td>8.3</td>
<td>The Helmholtz Singular Vortex and the Obukhov Geostrophic Vortex</td>
<td>75</td>
</tr>
<tr>
<td>8.4</td>
<td>Exercises</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>Equations of Quasi-geostrophic Baroclinic Motion</td>
<td>83</td>
</tr>
<tr>
<td>9.1</td>
<td>Equilibrium State of a Rotating Baroclinic Medium</td>
<td>83</td>
</tr>
<tr>
<td>9.2</td>
<td>Quasi-geostrophic Approximation of the Equations of Motion of a Baroclinic Fluid</td>
<td>87</td>
</tr>
</tbody>
</table>
9.3 Exercises ... 92
References ... 92

10 The Energy Balance, Available Potential Energy, and Rossby Waves in a Baroclinic Atmosphere ... 93
10.1 The Energy Conservation Law and the Concept of Available Potential Energy ... 93
10.2 Baroclinic Rossby Waves ... 97
10.3 Exercises ... 98
References ... 99

11 Important Remarks on the Description of Baroclinic Geophysical Flows ... 101
11.1 On p-Coordinates .. 101
11.2 On Computing Integral Invariants 104
11.3 Exercise ... 106
References ... 106

Part III Hydrodynamic Stability and Atmospheric Dynamics

12 The Notion of Dynamical Stability via the Example of Motion of a Rigid Body with a Fixed Point ... 109
12.1 Statement of the Problem .. 109
12.2 Linear Theory .. 110
12.3 Nonlinear Theory: The Lyapunov–Arnold Method 112
12.4 Geometric Interpretation ... 114
12.5 Exercises ... 114
References ... 115

13 Stating the Linear Stability Problem for Plane-Parallel Flows of Ideal Homogeneous and Nonhomogeneous Fluids 117
13.1 Choosing the Initial Model ... 117
13.2 Linearization of the Equations of Motion 118
13.3 Reduction of Boundary Conditions 119
13.4 Exercises ... 122
References ... 123

14 The Method of Normal Modes and Its Simplest Applications in the Theory of Linear Stability of Plane-Parallel Flows ... 125
14.1 Reduction of the Problem by the Method of Normal Modes ... 125
14.2 Examples ... 128
14.3 Exercises ... 130
References ... 131

15 The Taylor Problem of Stability of Motion of a Stratified Fluid with a Linear Velocity Profile ... 133
15.1 Solution of the Reduced Problem 133
15.2 An Approximate Solution of the Nonreduced Problem 136
15.3 On Stability of a Flow of a Homogeneous Fluid with a Linear Velocity Profile ... 137
15.4 Exercises .. 138
References .. 139

16 Applications of Integral Relations and Conservation Laws in the Theory of Hydrodynamic Stability .. 141
16.1 General Theorems Based on Integral Relations 141
16.2 Proof of the Rayleigh Theorem by the Lyapunov–Arnold Method 146
16.3 Exercises .. 148
References .. 150

17 Stability of Zonal Flows of a Barotropic Atmosphere; The Notion of Barotropic Instability .. 151
17.1 The Kuo Theorem ... 151
17.2 The Barotropic Instability Mechanism via an Example
of the Utmost Simplistic Equations of Atmospheric Dynamics ... 153
17.3 Exercises .. 156
References .. 157

18 The Concept of Baroclinic Instability; The Eady Model 159
18.1 Stating the Problem ... 159
18.2 The Charney–Stern Theorem .. 161
18.3 The Eady Model ... 162
18.4 Exercises .. 167
References .. 167

Part IV Friction in Geophysical Boundary Layers and Their Models

19 Equations of Motion of a Viscous Fluid; The Boundary Conditions . 171
19.1 Derivation of the Navier–Stokes Equations 171
19.2 Formulation of Boundary Conditions 174
19.3 Dissipation of Kinetic Energy in an Incompressible Fluid 175
19.4 Heat Transfer in a Compressible Fluid 176
19.5 Heat Transfer in an Incompressible Fluid 178
19.6 Exercises .. 179
References .. 179

20 Friction Mechanisms in Global Geophysical Flows; Quasi-
geostrophic Equation for Transformation of Potential Vorticity .. 181
20.1 Ekman Planetary Boundary Layer 182
20.2 The Praudman–Stewartson Layers 184
20.3 The Quasi-geostrophic Equation for Transformation of Potential Vorticity of a Barotropic Viscous Atmosphere 186
20.4 Exercises .. 188
References .. 188
21 Kolmogorov Flow and the Role of Surface Friction 189
 21.1 Formulation of a Linear Stability Problem 189
 21.2 Application to a Stability Study of Rossby Waves 191
 21.3 Conclusions .. 193
 References ... 194

22 Stability of Quasi-two-dimensional Shear Flows with Arbitrary
 Velocity Profiles .. 195
 22.1 New Interpretation of the Results in Linear Stability Theory
 for the Kolmogorov Flow 195
 22.2 Results in Linear Stability Theory for Strictly Two-Dimensional
 Shear Flows and Their New Interpretation 197
 22.3 Surface of Neutral Stability of Typical Quasi-two-dimensional
 Shear Flows .. 199
 22.4 On Nonlinear Stability Theory of Quasi-two-dimensional Shear
 Flows .. 201
 22.5 Exercises .. 203
 References ... 204

23 Friction in a Turbulent Boundary Layer 205
 23.1 Turbulence in the Atmospheric Surface Layer 206
 23.2 Turbulent Planetary Boundary Layer (PBL) and Its Impact
 on Motions of Global Scale 208
 References ... 213

Part V Mechanical Prototypes of Equations of Motion of a Rotating
 Stratified Fluid and a Toy Model of Atmospheric Circulation

24 Hydrodynamic Interpretation of the Euler Equations of Motion
 of a Classical Gyroscope and Their Invariants 217
 24.1 A Hydrodynamical Top 217
 24.2 Mechanical and Fluid Gyroscopes in the Field of Coriolis Forces . 220
 24.3 A Historical Note 222
 24.4 Exercises .. 223
 References ... 224

25 Mechanical Interpretation of the Oberbeck–Boussinesq Equations
 of Motion of an Incompressible Stratified Fluid in a Gravitational
 Field ... 225
 25.1 A Baroclinic Top 225
 25.2 Quasi-geostrophic Approximation of a Baroclinic Top 228
 25.3 Exercises .. 233
 References ... 233

26 Motion of Barotropic and Baroclinic Tops as Mechanical Prototypes
 for the General Circulation of Barotropic and Baroclinic Inviscid
 Atmospheres ... 235
 26.1 Motion of a Barotropic Top 235
26.2 Motion of a Baroclinic Top .. 237
26.3 Comparison of Quasi-geostrophic and Exact Motions
of a Baroclinic Top Depending on the Stratification Parameter
at Small Initial Rossby Numbers 240
References .. 244

27 Toy Model for General Circulation of a Viscous Atmosphere 245
27.1 Consideration of Friction and External Heating 245
27.2 Toy Circulation of Hadley and Rossby 245
27.3 Influence of the Inclination Angle of the Axis of General Rotation
Relative to the Gravity Direction .. 255
27.4 Conclusions ... 256
References .. 257

Appendix A On a Certain Boundary Condition 259

Appendix B Stability of the Kolmogorov Flow with an External Friction 263
B.1 Derivation of the Equation for σ 263
B.2 Critical Curves ... 265
B.3 Exercises ... 267
References .. 267

Index .. 269
Fundamentals of Geophysical Hydrodynamics
Dolzhansky, F.V. - Gledzer, A.E.; Gledzer, E.B. (Eds.)
2013, XIV, 274 p., Hardcover
ISBN: 978-3-642-31033-1