Contents

1 Introduction .. 1
 1.1 The Experimental Observations of 2D Supramolecular
 Monolayers ... 3
 1.1.1 Melamine ... 4
 1.1.2 PTCDA ... 6
 1.1.3 PTCDI ... 9
 1.1.4 NTCDA and NTCDI 9
 1.1.5 Mixed Phases PTCDA/PTCDI-Melamine 11
 1.2 Theoretical Issues Related to 2D Supramolecular
 Monolayers ... 12
 1.3 Experimental Techniques STM and AFM 13
 1.3.1 STM ... 14
 1.3.2 AFM Technique 17
 References .. 18

2 Theoretical Methods ... 23
 2.1 Solving the Schrödinger Equation 23
 2.2 The Hartree-Fock Method 25
 2.3 Density Functional Theory 27
 2.4 Technical Details of DFT Calculations 28
 2.4.1 Choice of the Basis Set 29
 2.4.2 Pseudopotential Method 30
 2.4.3 Periodic Boundary Conditions and k-Point Sampling... 31
 2.5 Siesta Method .. 31
 2.5.1 Definition of Useful Energies to Analyse
 Systems Stability 32
 2.5.2 Characterisation of the Hydrogen Bonds:
 “Kebab” Structures 33
 2.6 Diffusion Calculations 33
 2.7 Van der Waals Implementation in DFT Method 33
3 Hydrogen-Bonding Templates in the Gas Phase 41
 3.1 Melamine ... 41
 3.1.1 Dimer ... 41
 3.1.2 Trimers 48
 3.1.3 Tetramers 50
 3.1.4 Comparison with Experimental Data 53
 3.2 PTCDA .. 55
 3.2.1 PTCDA Dimers 55
 3.2.2 One-Dimensional Chains Based on the PTCDA Pairs 57
 3.2.3 Two-Dimensional Structures Based on the PTCDA Pairs .. 59
 3.2.4 Going Beyond Two Molecules Per Cell 63
 3.3 PTCDI .. 66
 3.3.1 PTCDI Dimers 66
 3.3.2 One-Dimensional Chains Based on the PTCDI Pairs 68
 3.3.3 Monolayers Based on the PTCDI Dimers 68
 3.4 NTCDA .. 74
 3.4.1 NTCDA Dimers 74
 3.4.2 One-Dimensional Chain Based on the NTCDA Dimers 76
 3.4.3 Monolayers Based on NTCDA Dimers 77
 3.5 NTCDI .. 78
 3.5.1 NTCDI Dimers 78
 3.6 Mixed PTCDA-Melamine and PTCDI-Melamine 79
 3.6.1 Melamine PTCDA/PTCDI Dimers 79
 3.6.2 One-Dimensional Chains and Two-Dimensional Monolayers Based on Melamine-PTCDA and Melamine PTCDI Dimers 81
 3.6.3 Going Beyond Two Molecules Per Unit Cell 83
 3.7 Importance of vdW Interaction for Hydrogen Bonding Systems 86
 3.8 Conclusions .. 88
References ... 88
4 Molecules on the Au(111) Surface

4.1 Melamine on the Au(111) Surface

4.1.1 Adsorption of Melamine on the Au(111) Surface

4.1.2 Commensurability of the Melamine Network and the Au(111) Surface

4.1.3 Corrugation of the Surface Potential

4.2 PTCDA/PTCDI and NTCDA/NTCDI on the Au(111) Surface

4.2.1 Adsorption of PTCDA, PTCDI, NTCDA and NTCDA on the Au(111) Surface

4.2.2 Corrugation of the Surface Potential

4.3 Importance of vdW Interaction for Stabilisation of the Molecules on the Gold Surface

4.3.1 Approximate Method with Sci-Fi: Analysis of Adsorption Energy and Corrugation Potential

4.3.2 vdW-DF Method (Quantum Espresso and Siesta) Applied to Molecules on the Au(111) Surface

4.3.3 Effect of vdW-DF Functional in the Electronic Charge Density Difference: PTCDA Case

4.4 Conclusions

References

5 Influence of Dynamics of Melamine with Au ad-Atom on the Au(111) Surface on Self Assembled Structures: Bright Spots

5.1 Diffusion of Au Atoms on the Au(111) Surface and Detachment from a Step Edge

5.2 Gas Phase Calculations: First Attempts

5.3 Interaction of a Melamine with an Au ad-Atom on the Au(111) Surface

5.4 Diffusion Calculations of Melamine and “Melamine + Au ad-Atom” Block

5.5 Melamine Clusters and a Au ad-Atom

5.6 The Final Stage of Formation of a Melamine Hexagon with a Au ad-Atom

5.7 Modelling the STM Images of the Hexagonal Cluster on the Au(111) Surface

5.8 Conclusion

References

6 Modelling of DNA Derivatives and Comparison with Experimental Results

6.1 Pairs Based on the DNA Derivatives in the Gas Phase

6.2 Pairs Based on the Guanine and Cytosine DNA Derivative Molecules in the Gas Phase
6.3 One-Dimensional Structures Based on the DNA Homo-Pairs in the Gas Phase .. 143
6.4 Gas-Phase Two-Dimensional Structures Based on the DNA Pairs .. 147
6.5 Interaction with the Au(111) Surface and STM Modelling .. 151
 6.5.1 Single DNA Bases on the Au(111) Surface 151
 6.5.2 DNA Base Pairs on the Au(111) Surface 154
6.6 Comparison with Experimental Data 155
6.7 Conclusion ... 160
References ... 160

7 Conclusions ... 161
References ... 165

Index .. 167
Self-Assembly of Flat Organic Molecules on Metal Surfaces
A Theoretical Characterisation
Mura, M.
2012, XVI, 169 p., Hardcover
ISBN: 978-3-642-30324-1