Contents

1 Sources and Characteristics of Remote Sensing Image Data

1.1 Energy Sources and Wavelength Ranges ... 1
1.2 Primary Data Characteristics ... 4
1.3 Remote Sensing Platforms ... 6
1.4 What Earth Surface Properties are Measured? 10
 1.4.1 Sensing in the Visible and Reflected Infrared Ranges 12
 1.4.2 Sensing in the Thermal Infrared Range 13
 1.4.3 Sensing in the Microwave Range 15
1.5 Spatial Data Sources in General and Geographic Information Systems .. 18
1.6 Scale in Digital Image Data .. 19
1.7 Digital Earth .. 20
1.8 How This Book is Arranged ... 21
1.9 Bibliography on Sources and Characteristics of Remote Sensing Image Data .. 23
1.10 Problems ... 25

2 Correcting and Registering Images

2.1 Introduction .. 27
2.2 Sources of Radiometric Distortion .. 28
2.3 Instrumentation Errors ... 28
 2.3.1 Sources of Distortion .. 28
 2.3.2 Correcting Instrumentation Errors 30
2.4 Effect of the Solar Radiation Curve and the Atmosphere on Radiometry .. 31
2.5 Compensating for the Solar Radiation Curve 32
2.6 Influence of the Atmosphere .. 33
2.7 Effect of the Atmosphere on Remote Sensing Imagery 37
2.8 Correcting Atmospheric Effects in Broad Waveband Systems 38
2.9 Correcting Atmospheric Effects in Narrow Waveband Systems 40
2.10 Empirical, Data Driven Methods for Atmospheric Correction 44
 2.10.1 Haze Removal by Dark Subtraction .. 44
 2.10.2 The Flat Field Method ... 45
 2.10.3 The Empirical Line Method .. 45
 2.10.4 Log Residuals ... 46
2.11 Sources of Geometric Distortion .. 47
2.12 The Effect of Earth Rotation .. 48
2.13 The Effect of Variations in Platform Altitude, Attitude and Velocity 50
2.14 The Effect of Sensor Field of View: Panoramic Distortion 51
2.15 The Effect of Earth Curvature .. 53
2.16 Geometric Distortion Caused by Instrumentation Characteristics 54
 2.16.1 Sensor Scan Nonlinearities .. 55
 2.16.2 Finite Scan Time Distortion .. 55
 2.16.3 Aspect Ratio Distortion .. 55
2.17 Correction of Geometric Distortion ... 56
2.18 Use of Mapping Functions for Image Correction ... 56
 2.18.1 Mapping Polynomials and the Use of Ground Control Points 57
 2.18.2 Building a Geometrically Correct Image ... 58
 2.18.3 Resampling and the Need for Interpolation .. 59
 2.18.4 The Choice of Control Points .. 61
 2.18.5 Example of Registration to a Map Grid .. 62
2.19 Mathematical Representation and Correction of Geometric Distortion 64
 2.19.1 Aspect Ratio Correction .. 64
 2.19.2 Earth Rotation Skew Correction .. 65
 2.19.3 Image Orientation to North–South .. 66
 2.19.4 Correcting Panoramic Effects .. 66
 2.19.5 Combining the Corrections .. 66
2.20 Image to Image Registration .. 67
 2.20.1 Refining the Localisation of Control Points .. 67
 2.20.2 Example of Image to Image Registration .. 69
2.21 Other Image Geometry Operations ... 71
 2.21.1 Image Rotation .. 71
 2.21.2 Scale Changing and Zooming .. 72
3 Interpreting Images 79
 3.1 Introduction .. 79
 3.2 Photointerpretation 79
 3.2.1 Forms of Imagery for Photointerpretation 80
 3.2.2 Computer Enhancement of Imagery for Photointerpretation .. 82
 3.3 Quantitative Analysis: From Data to Labels 83
 3.4 Comparing Quantitative Analysis and Photointerpretation 84
 3.5 The Fundamentals of Quantitative Analysis 86
 3.5.1 Pixel Vectors and Spectral Space 86
 3.5.2 Linear Classifiers 88
 3.5.3 Statistical Classifiers 90
 3.6 Sub-Classes and Spectral Classes 92
 3.7 Unsupervised Classification 93
 3.8 Bibliography on Interpreting Images 94
 3.9 Problems ... 95

4 Radiometric Enhancement of Images 99
 4.1 Introduction .. 99
 4.1.1 Point Operations and Look Up Tables 99
 4.1.2 Scalar and Vector Images 99
 4.2 The Image Histogram 100
 4.3 Contrast Modification 100
 4.3.1 Histogram Modification Rule 100
 4.3.2 Linear Contrast Modification 102
 4.3.3 Saturating Linear Contrast Enhancement 102
 4.3.4 Automatic Contrast Enhancement 103
 4.3.5 Logarithmic and Exponential Contrast Enhancement .. 105
 4.3.6 Piecewise Linear Contrast Modification 105
 4.4 Histogram Equalisation 106
 4.4.1 Use of the Cumulative Histogram 106
 4.4.2 Anomalies in Histogram Equalisation 112
 4.5 Histogram Matching 114
 4.5.1 Principle .. 114
 4.5.2 Image to Image Contrast Matching 115
 4.5.3 Matching to a Mathematical Reference 115
 4.6 Density Slicing 118
 4.6.1 Black and White Density Slicing 118
 4.6.2 Colour Density Slicing and Pseudocolouring 119
6.3.4 Example and Some Practical Considerations 173
6.3.5 Application of Principal Components in Image Enhancement and Display 176
6.3.6 The Taylor Method of Contrast Enhancement 178
6.3.7 Use of Principal Components for Image Compression 181
6.3.8 The Principal Components Transform in Change Detection Applications 182
6.3.9 Use of Principal Components for Feature Reduction ... 186
6.4 The Noise Adjusted Principal Components Transform 186
6.5 The Kauth–Thomas Tasseled Cap Transform 189
6.6 The Kernel Principal Components Transformation 192
6.7 HSI Image Display ... 195
6.8 Pan Sharpening ... 197
6.9 Bibliography on Spectral Domain Image Transforms 198
6.10 Problems ... 199

7 Spatial Domain Image Transforms .. 203
7.1 Introduction ... 203
7.2 Special Functions ... 204
7.2.1 The Complex Exponential Function 204
7.2.2 The Impulse or Delta Function 206
7.2.3 The Heaviside Step Function 207
7.3 The Fourier Series ... 207
7.4 The Fourier Transform ... 210
7.5 The Discrete Fourier Transform 212
7.5.1 Properties of the Discrete Fourier Transform 214
7.5.2 Computing the Discrete Fourier Transform 215
7.6 Convolution ... 215
7.6.1 The Convolution Integral 215
7.6.2 Convolution with an Impulse 216
7.6.3 The Convolution Theorem 216
7.6.4 Discrete Convolution 217
7.7 Sampling Theory ... 218
7.8 The Discrete Fourier Transform of an Image 221
7.8.1 The Transformation Equations 221
7.8.2 Evaluating the Fourier Transform of an Image 222
7.8.3 The Concept of Spatial Frequency 223
7.8.4 Displaying the DFT of an Image 223
7.9 Image Processing Using the Fourier Transform 224
7.10 Convolution in two Dimensions 226
7.11 Other Fourier Transforms .. 227
7.12 Leakage and Window Functions 227
7.13 The Wavelet Transform

7.13.1 Background

7.13.2 Orthogonal Functions and Inner Products

7.13.3 Wavelets as Basis Functions

7.13.4 Dyadic Wavelets with Compact Support

7.13.5 Choosing the Wavelets

7.13.6 Filter Banks

7.13.6.1 Sub Band Filtering, and Downsampling

7.13.6.2 Reconstruction from the Wavelets, and Upsampling

7.13.6.3 Relationship Between the Low and High Pass Filters

7.13.7 Choice of Wavelets

7.14 The Wavelet Transform of an Image

7.15 Applications of the Wavelet Transform in Remote Sensing Image Analysis

7.16 Bibliography on Spatial Domain Image Transforms

7.17 Problems

8 Supervised Classification Techniques

8.1 Introduction

8.2 The Essential Steps in Supervised Classification

8.3 Maximum Likelihood Classification

8.3.1 Bayes’ Classification

8.3.2 The Maximum Likelihood Decision Rule

8.3.3 Multivariate Normal Class Models

8.3.4 Decision Surfaces

8.3.5 Thresholds

8.3.6 Number of Training Pixels Required

8.3.7 The Hughes Phenomenon and the Curse of Dimensionality

8.3.8 An Example

8.4 Gaussian Mixture Models

8.5 Minimum Distance Classification

8.5.1 The Case of Limited Training Data

8.5.2 The Discriminant Function

8.5.3 Decision Surfaces for the Minimum Distance Classifier

8.5.4 Thresholds

8.5.5 Degeneration of Maximum Likelihood to Minimum Distance Classification

8.5.6 Classification Time Comparison of the Maximum Likelihood and Minimum Distance Rules

8.6 Parallelepiped Classification
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Mahalanobis Classification</td>
<td>271</td>
</tr>
<tr>
<td>8.8</td>
<td>Non-Parametric Classification</td>
<td>271</td>
</tr>
<tr>
<td>8.9</td>
<td>Table Look Up Classification</td>
<td>272</td>
</tr>
<tr>
<td>8.10</td>
<td>kNN (Nearest Neighbour) Classification</td>
<td>273</td>
</tr>
<tr>
<td>8.11</td>
<td>The Spectral Angle Mapper</td>
<td>274</td>
</tr>
<tr>
<td>8.12</td>
<td>Non-Parametric Classification from a Geometric Basis</td>
<td>274</td>
</tr>
<tr>
<td>8.12.1</td>
<td>The Concept of a Weight Vector</td>
<td>274</td>
</tr>
<tr>
<td>8.12.2</td>
<td>Testing Class Membership</td>
<td>275</td>
</tr>
<tr>
<td>8.13</td>
<td>Training a Linear Classifier</td>
<td>276</td>
</tr>
<tr>
<td>8.14</td>
<td>The Support Vector Machine: Linearly Separable Classes</td>
<td>276</td>
</tr>
<tr>
<td>8.15</td>
<td>The Support Vector Machine: Overlapping Classes</td>
<td>281</td>
</tr>
<tr>
<td>8.16</td>
<td>The Support Vector Machine: Nonlinearly Separable Data and Kernels</td>
<td>283</td>
</tr>
<tr>
<td>8.17</td>
<td>Multi-Category Classification with Binary Classifiers</td>
<td>286</td>
</tr>
<tr>
<td>8.18</td>
<td>Committees of Classifiers</td>
<td>288</td>
</tr>
<tr>
<td>8.18.1</td>
<td>Bagging</td>
<td>288</td>
</tr>
<tr>
<td>8.18.2</td>
<td>Boosting and AdaBoost</td>
<td>289</td>
</tr>
<tr>
<td>8.19</td>
<td>Networks of Classifiers: The Neural Network</td>
<td>290</td>
</tr>
<tr>
<td>8.19.1</td>
<td>The Processing Element</td>
<td>291</td>
</tr>
<tr>
<td>8.19.2</td>
<td>Training the Neural Network—Backpropagation</td>
<td>292</td>
</tr>
<tr>
<td>8.19.3</td>
<td>Choosing the Network Parameters</td>
<td>296</td>
</tr>
<tr>
<td>8.19.4</td>
<td>Example</td>
<td>297</td>
</tr>
<tr>
<td>8.20</td>
<td>Context Classification</td>
<td>299</td>
</tr>
<tr>
<td>8.20.1</td>
<td>The Concept of Spatial Context</td>
<td>299</td>
</tr>
<tr>
<td>8.20.2</td>
<td>Context Classification by Image Pre-processing</td>
<td>302</td>
</tr>
<tr>
<td>8.20.3</td>
<td>Post Classification Filtering</td>
<td>302</td>
</tr>
<tr>
<td>8.20.4</td>
<td>Probabilistic Relaxation Labelling</td>
<td>303</td>
</tr>
<tr>
<td>8.20.4.1</td>
<td>The Algorithm</td>
<td>303</td>
</tr>
<tr>
<td>8.20.4.2</td>
<td>The Neighbourhood Function</td>
<td>304</td>
</tr>
<tr>
<td>8.20.4.3</td>
<td>Determining the Compatibility Coefficients</td>
<td>305</td>
</tr>
<tr>
<td>8.20.4.4</td>
<td>Stopping the Process</td>
<td>306</td>
</tr>
<tr>
<td>8.20.4.5</td>
<td>Examples</td>
<td>307</td>
</tr>
<tr>
<td>8.20.5</td>
<td>Handling Spatial Context by Markov Random Fields</td>
<td>308</td>
</tr>
<tr>
<td>8.21</td>
<td>Bibliography on Supervised Classification Techniques</td>
<td>312</td>
</tr>
<tr>
<td>8.22</td>
<td>Problems</td>
<td>315</td>
</tr>
<tr>
<td>9</td>
<td>Clustering and Unsupervised Classification</td>
<td>319</td>
</tr>
<tr>
<td>9.1</td>
<td>How Clustering is Used</td>
<td>319</td>
</tr>
<tr>
<td>9.2</td>
<td>Similarity Metrics and Clustering Criteria</td>
<td>320</td>
</tr>
<tr>
<td>9.3</td>
<td>k Means Clustering</td>
<td>322</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The k Means Algorithm</td>
<td>322</td>
</tr>
<tr>
<td>9.4</td>
<td>Isodata Clustering</td>
<td>323</td>
</tr>
</tbody>
</table>
9.4.1 Merging and Deleting Clusters ... 323
9.4.2 Splitting Elongated Clusters ... 325
9.5 Choosing the Initial Cluster Centres 325
9.6 Cost of \(k \) Means and Isodata Clustering. 326
9.7 Unsupervised Classification ... 326
9.8 An Example of Clustering with the \(k \) Means Algorithm 327
9.9 A Single Pass Clustering Technique 327
9.9.1 The Single Pass Algorithm ... 327
9.9.2 Advantages and Limitations of the Single Pass Algorithm 329
9.9.3 Strip Generation Parameter ... 329
9.9.4 Variations on the Single Pass Algorithm 330
9.9.5 An Example of Clustering with the Single Pass Algorithm 331
9.10 Hierarchical Clustering .. 331
9.10.1 Agglomerative Hierarchical Clustering 332
9.11 Other Clustering Metrics ... 333
9.12 Other Clustering Techniques .. 333
9.13 Cluster Space Classification .. 335
9.14 Bibliography on Clustering and Unsupervised Classification 339
9.15 Problems ... 340

10 Feature Reduction .. 343
10.1 The Need for Feature Reduction 343
10.2 A Note on High Dimensional Data 344
10.3 Measures of Separability .. 345
10.4 Divergence .. 345
10.4.1 Definition ... 345
10.4.2 Divergence of a Pair of Normal Distributions 347
10.4.3 Using Divergence for Feature Selection 348
10.4.4 A Problem with Divergence 349
10.5 The Jeffries-Matusita (JM) Distance 350
10.5.1 Definition ... 350
10.5.2 Comparison of Divergence and JM Distance 351
10.6 Transformed Divergence ... 351
10.6.1 Definition ... 351
10.6.2 Transformed Divergence and the Probability of Correct Classification ... 352
10.6.3 Use of Transformed Divergence in Clustering 353
10.7 Separability Measures for Minimum Distance Classification 353
10.8 Feature Reduction by Spectral Transformation 354
11.7 Assessing Classification Accuracy

11.7.1 Use of a Testing Set of Pixels

11.7.2 The Error Matrix

11.7.3 Quantifying the Error Matrix

11.7.4 The Kappa Coefficient

11.7.5 Number of Testing Samples Required for Assessing Map Accuracy

11.7.6 Number of Testing Samples Required for Populating the Error Matrix

11.7.7 Placing Confidence Limits on Assessed Accuracy

11.7.8 Cross Validation Accuracy Assessment and the Leave One Out Method

11.8 Decision Tree Classifiers

11.8.1 CART (Classification and Regression Trees)

11.8.2 Random Forests

11.8.3 Progressive Two-Class Decision Classifier

11.9 Image Interpretation through Spectroscopy and Spectral Library Searching

11.10 End Members and Unmixing

11.11 Is There a Best Classifier?

11.12 Bibliography on Image Classification in Practice

11.13 Problems

12 Multisource Image Analysis

12.1 Introduction

12.2 Stacked Vector Analysis

12.3 Statistical Multisource Methods

12.3.1 Joint Statistical Decision Rules

12.3.2 Committee Classifiers

12.3.3 Opinion Pools and Consensus Theory

12.3.4 Use of Prior Probabilities

12.3.5 Supervised Label Relaxation

12.4 The Theory of Evidence

12.4.1 The Concept of Evidential Mass

12.4.2 Combining Evidence with the Orthogonal Sum

12.4.3 Decision Rules

12.5 Knowledge-Based Image Analysis

12.5.1 Emulating Photointerpretation to Understand Knowledge Processing

12.5.2 The Structure of a Knowledge-Based Image Analysis System

12.5.3 Representing Knowledge in a Knowledge-Based Image Analysis System

12.5.4 Processing Knowledge: The Inference Engine
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.5 Rules as Justifiers of a Labelling Proposition</td>
<td>454</td>
</tr>
<tr>
<td>12.5.6 Endorsing a Labelling Proposition</td>
<td>455</td>
</tr>
<tr>
<td>12.5.7 An Example</td>
<td>456</td>
</tr>
<tr>
<td>12.6 Operational Multisource Analysis</td>
<td>458</td>
</tr>
<tr>
<td>12.7 Bibliography on Multisource Image Analysis</td>
<td>461</td>
</tr>
<tr>
<td>12.8 Problems</td>
<td>463</td>
</tr>
<tr>
<td>Appendix A: Satellite Altitudes and Periods</td>
<td>465</td>
</tr>
<tr>
<td>Appendix B: Binary Representation of Decimal Numbers</td>
<td>467</td>
</tr>
<tr>
<td>Appendix C: Essential Results from Vector and Matrix Algebra</td>
<td>469</td>
</tr>
<tr>
<td>Appendix D: Some Fundamental Material from Probability and Statistics</td>
<td>479</td>
</tr>
<tr>
<td>Appendix E: Penalty Function Derivation of the Maximum Likelihood Decision Rule</td>
<td>483</td>
</tr>
<tr>
<td>Index</td>
<td>487</td>
</tr>
</tbody>
</table>
Remote Sensing Digital Image Analysis
An Introduction
Richards, J.A.
2013, XIX, 494 p. 223 illus., 20 illus. in color., Hardcover
ISBN: 978-3-642-30061-5