Contents

1 Diffraction and the X-Ray Powder Diffractometer 1
 1.1 Diffraction ... 1
 1.1.1 Introduction to Diffraction 1
 1.1.2 Bragg’s Law .. 3
 1.1.3 Strain Effects 6
 1.1.4 Size Effects 6
 1.1.5 A Symmetry Consideration 8
 1.1.6 Momentum and Energy 9
 1.1.7 Experimental Methods 10
 1.2 The Creation of X-Rays 12
 1.2.1 Bremsstrahlung 13
 1.2.2 Characteristic Radiation 15
 1.2.3 Synchrotron Radiation 20
 1.3 The X-Ray Powder Diffractometer 22
 1.3.1 Practice of X-Ray Generation 22
 1.3.2 Goniometer for Powder Diffraction 24
 1.3.3 Monochromators, Filters, Mirrors 27
 1.4 X-Ray Detectors for XRD and TEM 29
 1.4.1 Detector Principles 29
 1.4.2 Solid State Detectors 31
 1.4.3 Position-Sensitive Detectors 33
 1.4.4 Charge Sensitive Preamplifier 34
 1.4.5 Other Electronics 35
 1.5 Experimental X-Ray Powder Diffraction Data 37
 1.5.1 * Intensities of Powder Diffraction Peaks 37
 1.5.2 Normals of Diffracting Planes 37
 1.5.3 Slit Width 38
 1.5.4 Lorentz Factor 38

1 In section titles, the asterisk, “*,” denotes a more specialized topic. The double dagger, “‡,” warns of a higher level of mathematics, physics, or crystallography.
2 The TEM and Its Optics 59
 2.1 Introduction to the Transmission Electron Microscope 59
 2.2 Working with Lenses and Ray Diagrams 63
 2.2.1 Single Lenses 63
 2.2.2 Multi-Lens Systems 67
 2.3 Modes of Operation of a TEM 68
 2.3.1 Dark-Field and Bright-Field Imaging 68
 2.3.2 Selected Area Diffraction 73
 2.3.3 Convergent-Beam Electron Diffraction 77
 2.3.4 Nanobeam Diffraction 78
 2.3.5 High-Resolution Imaging 79
 2.4 Practical TEM Optics 82
 2.4.1 Electron Guns 82
 2.4.2 Illumination Lens Systems 85
 2.4.3 Imaging Lens Systems 86
 2.5 Glass Lenses .. 88
 2.5.1 Interfaces .. 88
 2.5.2 Lenses and Rays 89
 2.5.3 Lenses and Phase Shifts 92
 2.6 Magnetic Lenses 93
 2.6.1 Focusing .. 93
 2.6.2 Image Rotation 96
 2.6.3 Pole Piece Gap 98
 2.7 Lens Aberrations and Other Defects 98
 2.7.1 Spherical Aberration 98
 2.7.2 Chromatic Aberration 99
 2.7.3 Diffraction 100
 2.7.4 Astigmatism 101
 2.7.5 Gun Brightness 104
 2.8 Resolution .. 106
 2.9 Further Reading 108
 2.10 Problems ... 109
Contents

3 Neutron Scattering

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Neutrons and Neutron Scattering</td>
<td>117</td>
</tr>
<tr>
<td>3.1.1 Neutron Scattering</td>
<td>117</td>
</tr>
<tr>
<td>3.1.2 Properties of Neutrons</td>
<td>118</td>
</tr>
<tr>
<td>3.2 Neutron Sources</td>
<td>120</td>
</tr>
<tr>
<td>3.2.1 Fission and Spallation</td>
<td>120</td>
</tr>
<tr>
<td>3.2.2 Moderation</td>
<td>121</td>
</tr>
<tr>
<td>3.3 Neutron Powder Diffractometers</td>
<td>122</td>
</tr>
<tr>
<td>3.3.1 Reactor-Based Powder Diffractometer</td>
<td>122</td>
</tr>
<tr>
<td>3.3.2 Pulsed-Source-Based Powder Diffractometer</td>
<td>122</td>
</tr>
<tr>
<td>3.4 Waves of Phase</td>
<td>126</td>
</tr>
<tr>
<td>3.4.1 Phase in Elastic Scattering</td>
<td>126</td>
</tr>
<tr>
<td>3.4.2 Phase in Inelastic Scattering</td>
<td>128</td>
</tr>
<tr>
<td>3.5 Instruments for Measuring Larger Structures</td>
<td>129</td>
</tr>
<tr>
<td>3.5.1 Small-Angle Scattering</td>
<td>129</td>
</tr>
<tr>
<td>3.5.2 Neutron Reflectivity</td>
<td>130</td>
</tr>
<tr>
<td>3.6 Inelastic Scattering</td>
<td>133</td>
</tr>
<tr>
<td>3.6.1 Triple-Axis Spectrometer</td>
<td>133</td>
</tr>
<tr>
<td>3.6.2 Fermi Chopper Spectrometer</td>
<td>134</td>
</tr>
<tr>
<td>3.6.3 Other Inelastic Instruments</td>
<td>136</td>
</tr>
<tr>
<td>3.7 Quasielastic Scattering</td>
<td>137</td>
</tr>
<tr>
<td>3.8 Magnetic Scattering</td>
<td>139</td>
</tr>
<tr>
<td>3.9 Nuclear Scattering</td>
<td>140</td>
</tr>
<tr>
<td>3.10 Further Reading</td>
<td>141</td>
</tr>
<tr>
<td>3.11 Problems</td>
<td>142</td>
</tr>
</tbody>
</table>

4 Scattering

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Waves and Scattering</td>
<td>145</td>
</tr>
<tr>
<td>4.1.1 Wavefunctions</td>
<td>145</td>
</tr>
<tr>
<td>4.1.2 Coherent and Incoherent Scattering</td>
<td>148</td>
</tr>
<tr>
<td>4.1.3 Elastic and Inelastic Scattering</td>
<td>149</td>
</tr>
<tr>
<td>4.1.4 Wave Amplitudes and Cross-Sections</td>
<td>150</td>
</tr>
<tr>
<td>4.2 X-Ray Scattering</td>
<td>154</td>
</tr>
<tr>
<td>4.2.1 Electrodynamics of X-Ray Scattering</td>
<td>154</td>
</tr>
<tr>
<td>4.2.2 Inelastic Compton Scattering</td>
<td>158</td>
</tr>
<tr>
<td>4.2.3 X-Ray Mass Attenuation Coefficients</td>
<td>160</td>
</tr>
<tr>
<td>4.3 Coherent Elastic Scattering</td>
<td>162</td>
</tr>
<tr>
<td>4.3.1 Born Approximation for Electrons</td>
<td>162</td>
</tr>
<tr>
<td>4.3.2 Atomic Form Factors—Physical Picture</td>
<td>167</td>
</tr>
<tr>
<td>4.3.3 Scattering of Electrons by Model Potentials</td>
<td>170</td>
</tr>
<tr>
<td>4.3.4 Atomic Form Factors—General Formulation</td>
<td>174</td>
</tr>
<tr>
<td>4.4 Further Reading</td>
<td>178</td>
</tr>
<tr>
<td>4.5 Problems</td>
<td>178</td>
</tr>
</tbody>
</table>

5 Inelastic Electron Scattering and Spectroscopy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Inelastic Electron Scattering</td>
<td>181</td>
</tr>
<tr>
<td>5.2 Electron Energy-Loss Spectrometry (EELS)</td>
<td>183</td>
</tr>
</tbody>
</table>
5.2.1 Instrumentation .. 183
5.2.2 General Features of EELS Spectra 185
5.2.3 * Fine Structure .. 186
5.3 Plasmon Excitations 190
5.3.1 Plasmon Principles 190
5.3.2 * Plasmons and Specimen Thickness 192
5.4 Core Excitations ... 194
5.4.1 Scattering Angles and Energies—Qualitative 194
5.4.2 ‡ Inelastic Form Factor 197
5.4.3 ‡ * Double-Differential Cross-Section, \(d^2\sigma_{in}/d\phi\,dE\) 201
5.4.4 * Scattering Angles and Energies—Quantitative 203
5.4.5 ‡ * Differential Cross-Section, \(d\sigma_{in}/dE\) 204
5.4.6 ‡ Partial and Total Cross-Sections, \(\sigma_{in}\) 205
5.4.7 Quantification of EELS Core Edges 208
5.5 Energy-Filtered TEM Imaging (EFTEM) 209
5.5.1 Spectrum Imaging 209
5.5.2 Energy Filters ... 210
5.5.3 Chemical Mapping with Energy-Filtered Images 212
5.5.4 Chemical Analysis with High Spatial Resolution 214
5.6 Energy Dispersive X-Ray Spectrometry (EDS) 216
5.6.1 Electron Trajectories Through Materials 216
5.6.2 Fluorescence Yield 219
5.6.3 EDS Instrumentation Considerations 221
5.6.4 Artifacts in EDS Measurements 224
5.7 Quantitative EDS .. 225
5.7.1 Thin-Film Approximation 225
5.7.2 * ZAF Correction 228
5.7.3 * Limits of Microanalysis 230
5.8 Further Reading ... 232
5.9 Problems .. 233
6 Diffraction from Crystals 237
6.1 Sums of Wavelets from Atoms 237
6.1.1 Electron Diffraction from a Material 238
6.1.2 Wave Diffraction from a Material 240
6.2 The Reciprocal Lattice and the Laue Condition 244
6.2.1 Diffraction from a Simple Lattice 244
6.2.2 Reciprocal Lattice 245
6.2.3 Laue Condition .. 247
6.2.4 Equivalence of the Laue Condition and Bragg’s Law .. 247
6.2.5 Reciprocal Lattices of Cubic Crystals 248
6.3 Diffraction from a Lattice with a Basis 249
6.3.1 Structure Factor and Shape Factor 249
6.3.2 Structure Factor Rules 251
6.3.3 Symmetry Operations and Forbidden Diffractions 256
8 Diffraction Contrast in TEM Images

8.1 Contrast in TEM Images

8.2 Diffraction from Crystals with Defects

8.2.1 Review of the Deviation Parameter, \(s \)

8.2.2 Atom Displacements, \(\delta r \)

8.2.3 Shape Factor and \(t \)

8.2.4 Diffraction Contrast and \(\{ s, \delta r, t \} \)

8.3 Extinction Distance

8.4 The Phase-Amplitude Diagram

8.5 Fringes from Sample Thickness Variations

8.5.1 Thickness and Phase-Amplitude Diagrams

8.5.2 Thickness Fringes in TEM Images

8.6 Bend Contours in TEM Images

8.7 Diffraction Contrast from Strain Fields

8.8 Dislocations and Burgers Vector Determination

8.8.1 Diffraction Contrast from Dislocation Strain Fields

8.8.2 The \(g \cdot b \) Rule for Null Contrast

8.8.3 Image Position and Dislocation Pairs or Loops

8.9 Semi-Quantitative Diffraction Contrast from Dislocations

8.10 Weak-Beam Dark-Field (WBDF) Imaging of Dislocations

8.11 Fringes at Interfaces

8.11.1 Phase Shifts of Electron Wavelets Across Interfaces

8.11.2 Moiré Fringes

8.12 Diffraction Contrast from Stacking Faults

8.12.1 Kinematical Treatment

8.12.2 Results from Dynamical Theory

8.12.3 Determination of the Intrinsic or Extrinsic Nature of Stacking Faults

8.12.4 Partial Dislocations Bounding the Fault

8.12.5 An Example of a Stacking Fault Analysis

8.12.6 Sets of Stacking Faults in TEM Images

8.12.7 Related Fringe Contrast

8.13 Antiphase (\(\pi \)) Boundaries and \(\delta \) Boundaries

8.13.1 Antiphase Boundaries

8.13.2 \(\delta \) Boundaries

8.14 Contrast from Precipitates and Other Defects

8.14.1 Vacancies

8.14.2 Coherent Precipitates

8.14.3 Semicohherent and Incoherent Particles

8.15 Further Reading

8.16 Problems
Transmission Electron Microscopy and Diffractometry of Materials
Fultz, B.; Howe, J.M.
2013, XX, 764 p., Hardcover
ISBN: 978-3-642-29760-1