Contents

1 Introduction .. 1
1.1 LTE-A Technologies 1
1.2 LTE-A Relay Standardization 4
1.3 IEEE Relay Standards 5
1.4 Book Objectives and Outline 6
References .. 7

2 LTE-A Relay Scenarios and Evaluation Methodology 9
2.1 Relay Scenarios ... 9
2.1.1 Rural Area ... 9
2.1.2 Urban Hot Spot 10
2.1.3 Dead Spot ... 11
2.1.4 Indoor Hot Spot 12
2.1.5 Group Mobility 14
2.1.6 Emergency or Temporary Network Deployment .. 17
2.1.7 Wireless Backhaul Only 17
2.2 Channel Modeling ... 19
2.2.1 Large Scale Fading Modeling for RN–UE Connection .. 20
2.2.2 LOS Probability of RN–UE Connection 22
2.2.3 Large Scale Fading Modeling for eNB–RN Connection .. 24
2.2.4 LOS Probability eNB–RN Connection 26
2.3 Impacts of Relay Site Planning 28
2.3.1 Less Attenuation from Donor eNB 28
2.3.2 Improvement of LOS Probability in Donor eNB–RN Connection 31
2.4 Large Scale Fading Parameters 33
2.5 Small Scale Fading 33
2.6 Other Settings ... 38
References .. 38
3 LTE-A Relay Study and Related Technologies

3.1 Relay Categorization Based on Protocol Architecture

3.1.1 L1 Relay

3.1.2 L2 Relay

3.1.3 L3 Relay

3.2 Operating Band

3.2.1 Brief Description of LTE-A Carrier Aggregation

3.2.2 Relay with Carrier Aggregation

3.3 Number of Hops

3.4 Type 1 Relay

3.4.1 Definition

3.4.2 Technology Aspects

3.4.3 Semi-Analytical Evaluations

3.4.4 Downlink Performance Evaluation with Uniformly Distributed Relay Nodes

3.4.5 Downlink Performance Evaluation with Relay Nodes Placed Near Cell Edges

3.4.6 Uplink Performance Evaluation with Relay Nodes Placed Near Cell Edges

3.5 Type 2 Relay

3.5.1 Definition

3.5.2 Technologies

3.5.3 Performance Evaluations

3.6 Other Related Technologies in LTE-Advanced

3.6.1 Downlink Reference Signals

3.6.2 Enhanced ICIC

3.6.3 CoMP

References

4 Physical Layer Standardization of Release 10 Relay

4.1 Scenario

4.2 Physical Layer Control Channel Specification

4.2.1 Relay Downlink Frame Timing

4.2.2 Configuration of Start Symbol of R-PDCCH and PDSCH

4.2.3 Relay Uplink Frame Timing

4.2.4 Relay Node Synchronization

4.2.5 R-PDCCH Multiplexing

4.2.6 Reference Signal

4.2.7 Cross-Interleaved and Non Cross-Interleave R-PDCCH

4.2.8 PUCCH
4.3 Backhaul Subframe Configuration and HARQ Timing
4.3.1 FDD systems
4.3.2 TDD Systems
References

5 Higher Layer Aspects and RAN4 Performance Aspects
5.1 Relay Architecture
5.2 C-Plane Procedures
5.3 U-Plane Procedures
5.4 S1/X2 Procedures
5.5 Release 10 Relay Performance Aspects
5.5.1 RF Requirements in General
5.5.2 RF Requirements for Backhaul Link
5.5.3 RF Requirements for Access Link
5.5.4 Baseband Requirements
5.5.5 Synchronization Requirements
References

6 Implementation Aspects of Release 10 Relay
6.1 General Consideration of PHY Layer Implementation
6.2 Baseband Realization of Relay Node
6.2.1 Channel Characteristics of Backhaul and Access Links
6.2.2 Common Reference Signal Demodulation
6.2.3 DL DMRS Demodulation
6.2.4 Search Space for R-PDCCH Without Cross-Interleaving
6.2.5 Choice for Relay Timing
6.3 Radio Modules and Antennas of Relay Node
6.3.1 Power Amplifier and Filters
6.3.2 Clock Synchronization
6.3.3 Antennas
6.4 Relay Node Scheduler
6.4.1 Deployment Scenarios
6.4.2 Relay Frame Timing
6.4.3 Access Link HARQ
6.4.4 Uplink Power Control for UEs in RN Cell
6.4.5 Data Buffering
6.5 Baseband Implementations in Donor eNB
6.6 Scheduler at Donor eNB
6.6.1 Resource Allocations for R-PDCCH
6.6.2 Transport Block Size Determination and MCS Selection
6.6.3 Configurations of CSI Feedback and SRS
References
6.6.4 Resource Scheduling for PDSCH 169
6.6.5 Open Loop Uplink Power Control for RNs 171
6.7 Relay Network Planning. 171
 6.7.1 Number of RNs 171
 6.7.2 RN-to-RN Interference 172
 6.7.3 Cell Range Expansion and ABS Configuration .. 173
References ... 175

7 Outlook of Relay in Future LTE Releases 177
 7.1 Some Trends in Mobile Communications 177
 7.1.1 Trends at Terminal Side 177
 7.2 Cooperative Relays 180
 7.3 Relay Backhaul for High Speed Mobility 183
 7.4 Cooperative Mobile Relay 184
 7.5 Local Server 184
References ... 185
LTE-Advanced Relay Technology and Standardization
Yuan, Y.
2013, XV, 186 p. 133 illus., 70 illus. in color., Hardcover
ISBN: 978-3-642-29675-8