Contents

1 Introduction and Outlook .. 1
 1.1 Zeta Functions .. 1
 1.1.1 The Riemann Zeta Function 1
 1.1.2 The Hurwitz Zeta Function 3
 1.1.3 The Epstein Zeta Function 4
 1.1.4 A Word on Related Bibliography 5
 1.2 Zeta Function Regularization 5
 1.2.1 Historical Background 5
 1.2.2 The Zeta Function of a Differential Operator 6
 1.2.3 Regularization of the Vacuum Energy 8
 1.2.4 Regularization of One-Loop Graphs 8
 1.3 Examples and a Comparison with Other Procedures 10
 1.3.1 Some Explicit Examples 10
 1.3.2 Comparison with Other Regularization Methods 11
 1.3.3 A Word of Warning 13
 1.4 Present Developments and a Point on Rigor 14
 1.4.1 Calculation of Heat-Kernel Coefficients 15
 1.4.2 Determinant of the Laplacian 16
 1.5 General Definition of the Zeta Function of a Pseudo-differential
 Operator .. 17
 1.5.1 The Zeta Function of a \Psi DO 17
 1.5.2 The Zeta Regularized Determinant 18
 1.5.3 Multiplicative Anomaly 19
 1.5.4 On the Explicit Calculation of \zeta_A and det_\zeta A .. 20
 1.6 Future Perspectives: Operator Regularization 21
 1.6.1 Generalization and Further Extensions 21

2 Mathematical Formulas Involving the Different Zeta Functions ... 23
 2.1 A Simple Recurrence for the Higher Derivatives of the Hurwitz
 Zeta Function .. 23
 2.2 The Zeta-Function Regularization Theorem 29
2.2.1 The Theorem (Special Form) 31
2.3 Immediate Application of the Theorem 38
2.4 Expressions for Multi-series on Combinations Involving Arbitrary Constants and Exponents 41

3 A Treatment of the Non-polynomial Contributions: Application to Calculate Partition Functions of Strings and Membranes ... 49
3.1 Dealing with the Non-polynomial Term Δ_{ER} .. 49
 3.1.1 Proof of Asymptoticity of the Series ... 51
 3.1.2 The Remainder Term and the Poisson Resummation Formula ... 55
3.2 Numerical Estimates of the Remainder 57
3.3 Application: Summation of the String Partition Function for Different Ranges of the Temperature 60

4 Analytical and Numerical Study of Inhomogeneous Epstein and Epstein–Hurwitz Zeta Functions ... 67
4.1 Explicit Analytical Continuation of Inhomogeneous Epstein Zeta Functions ... 68
 4.1.1 The Particular Case of the Basic One-Dimensional Epstein–Hurwitz Series ... 69
 4.1.2 The Homogeneous Case: Chowla–Selberg’s Formula ... 72
 4.1.3 Derivation of the General Two-Dimensional Formula ... 73
4.2 Extended Chowla–Selberg Formulas, Associated with Arbitrary Forms of Quadratic+Linear+Constant Type ... 77
 4.2.1 Limit $q \to 0$... 78
 4.2.2 Case with $q = 0$ but $c_1 \neq 0$... 79
 4.2.3 Case with $c_1 = \cdots = c_p = q = 0$... 80
4.3 Numerical Analysis of the Inhomogeneous Generalized Epstein–Hurwitz Zeta Function ... 83
 4.3.1 Asymptotic Expansions of the Function and Its Derivatives with Respect to the Variable and Parameters ... 84

5 Physical Application: The Casimir Effect ... 95
5.1 Essentials of the Casimir Effect ... 95
 5.1.1 The Original Casimir Effect ... 95
 5.1.2 Connection with the van der Waals Forces and the London Theory ... 96
 5.1.3 The Specific Contribution of Casimir and Polder: Retarded van der Waals Forces ... 96
 5.1.4 The Lifshitz Theory ... 98
5.2 The Casimir Effect in Quantum Field Theory ... 100
 5.2.1 The Local Formulation of the Casimir Effect ... 100
 5.2.2 The Mystery of the Casimir Effect ... 100
 5.2.3 The Concept of the Vacuum Energy ... 101
 5.2.4 The Explicit, Regularized Definition of the Casimir Energy ... 103
5.2.5 Definition of the Casimir Energy Density and Its Relation with the Vacuum Energy 104
5.3 A Very Simple Computation of the Casimir Effect 105
5.3.1 The Casimir Effect for a Free Massless Scalar Field in $S^1 \times \mathbb{R}^d$ and in $T^2 \times \mathbb{R}^2$ Spacetimes 107
5.3.2 The Case of a Massless Scalar Field Between p Perpendicular Pairs of Parallel Walls with Dirichlet Boundary Conditions 110
5.3.3 Massless Scalar Field with Periodic and Neumann Boundary Conditions, and Electromagnetic Field 114

6 Five Physical Applications of the Inhomogeneous Generalized Epstein–Hurwitz Zeta Functions 119
6.1 Application: The Casimir Energy over Riemann Surfaces 120
6.2 Application: Kaluza–Klein Model with Spherical Compactification 125
6.3 Critical Behavior of a Field Theory at Non-zero Temperature 131
6.4 Application to Quantizing Through the Wheeler–De Witt Equation 134
6.4.1 Explicit Zeta-Function Calculation of the Essential Determinant and Extrema of the Potential 135
6.4.2 An Alternative Treatment by Means of Eisenstein Series 138
6.5 Spectral Zeta Function for Both Scalar and Vector Fields on a Spacetime with a Noncommutative Toroidal Part 141
6.5.1 Poles of the Zeta Function .. 141
6.5.2 Explicit Analytic Continuation of $\zeta_\alpha(s)$, $\alpha = 2, 3$, in the Complex s-Plane 143

7 Miscellaneous Applications Combining Zeta with Other Regularization Procedures 147
7.1 Relation Between the Generalized Pauli–Villars and the Covariant Regularizations 147
7.2 The Casimir Energy Corresponding to a Piecewise Uniform String 152
7.2.1 The Zero Temperature Theory 154
7.2.2 Regularized Casimir Energy and Numerical Results 157
7.2.3 The Finite Temperature Theory 160
7.3 Zeta and Hadamard Regularizations 164
7.3.1 A Zeta-Function Approach .. 166
7.3.2 Case of Two-Point Dirichlet Boundary Conditions 168
7.3.3 How to Deal with the Infinities? 169
7.3.4 Hadamard Regularization of the Casimir Effect 171

8 Applications to Gravity, Strings and p-Branes 175
8.1 Application to Spontaneous Compactification in Two-Dimensional Quantum Gravity 175
8.2 Application to the Study of the Stability of the Rigid Membrane 178
8.2.1 Calculation of the Potential .. 179
8.2.2 The Limit of Large Spacetime Dimensionality 180
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3</td>
<td>A Saddle Point Analysis</td>
<td>182</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Explicit Expressions for the Zeta-Function Regularization of the Effective Potential</td>
<td>183</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Discussion of the General Case</td>
<td>185</td>
</tr>
<tr>
<td>9</td>
<td>Eleventh Application: Topological Symmetry Breaking in Self-Interacting Theories</td>
<td>189</td>
</tr>
<tr>
<td>9.1</td>
<td>General Considerations</td>
<td>189</td>
</tr>
<tr>
<td>9.2</td>
<td>The One-Loop Effective Potential for the Self-Interacting Theory</td>
<td>190</td>
</tr>
<tr>
<td>9.3</td>
<td>The One-Loop Topological Mass</td>
<td>194</td>
</tr>
<tr>
<td>9.4</td>
<td>Renormalization of the Theory</td>
<td>196</td>
</tr>
<tr>
<td>9.5</td>
<td>Symmetry Breaking Mechanism for a Massless Scalar Field</td>
<td>198</td>
</tr>
<tr>
<td>10</td>
<td>Twelfth Application: Cosmology and the Quantum Vacuum</td>
<td>201</td>
</tr>
<tr>
<td>10.1</td>
<td>On the Reality of the Vacuum Fluctuations</td>
<td>202</td>
</tr>
<tr>
<td>10.2</td>
<td>On the Curvature and Topology of Space</td>
<td>203</td>
</tr>
<tr>
<td>10.2.1</td>
<td>On the Curvature</td>
<td>204</td>
</tr>
<tr>
<td>10.2.2</td>
<td>On the Topology</td>
<td>204</td>
</tr>
<tr>
<td>10.3</td>
<td>Vacuum Energy Fluctuations and the Cosmological Constant</td>
<td>205</td>
</tr>
<tr>
<td>10.4</td>
<td>Simple Model with Large and Small Compactified Dimensions</td>
<td>206</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Regularization of the Vacuum Energy Density</td>
<td>207</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Numerical Results</td>
<td>208</td>
</tr>
<tr>
<td>10.5</td>
<td>Braneworld Models</td>
<td>209</td>
</tr>
<tr>
<td>10.6</td>
<td>Supergraviton Theories</td>
<td>211</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>225</td>
</tr>
</tbody>
</table>
Ten Physical Applications of Spectral Zeta Functions
Elizalde, E.
2012, XIV, 227 p. 14 illus., Softcover
ISBN: 978-3-642-29404-4