Contents

1 The Phenomenon: Occurrence and Characteristics 1
 1.1 Marching Towards Absolute Zero 1
 1.2 Discovery of Superconductivity 2
 1.3 Occurrence of Superconductivity 3
 1.3.1 Elemental Superconductivity 3
 1.3.2 Alloys ... 3
 1.3.3 Binary Compounds (A-15 Materials) 3
 1.3.4 Heavy Fermion Superconductors 4
 1.3.5 Organic Superconductors 4
 1.3.6 C_{60}-Based Superconductors 6
 1.4 The Superconducting State 7
 1.5 Phase Coherence 10
 1.6 Coherence Length 11
 1.6.1 Pippard’s Equation and Coherence Length 12
 1.6.2 The Size of an Electron Pair 13
 1.6.3 Analogy Between Long Range Spatial Order
 in a Solid and Phase-Order in a Superconductor 14
 1.7 Critical Magnetic Field 14
 1.8 Meissner Effect .. 15
 1.9 Comparison Between a Superconductor and a Very Good
 (or Ideal) Conductor 16
 1.10 Isotope Effect .. 18
 1.11 Isotope Effect in HTSCs 19
 1.11.1 Optical Behaviour Study 19
 1.11.2 Elastic and Ultrasonic Studies 19
 1.12 The Energy Gap .. 20
 1.13 Thermodynamics of Superconductors 22
 1.13.1 Latent Heat of Superconducting Transitions 24
 1.13.2 Heat Capacity of Superconductors 26
 1.13.3 Strong Coupling Case 27
1.14 London Equations and Penetration Depth 28
1.15 Ginzberg–Landau Theory 31
1.16 Type-I and Type-II Superconductors 34
1.16.1 How a Normal Core is Formed in Mixed State? 37
1.17 Why Materials with High T_c Tend to Fall in Type-II Category? 39
1.18 Why It is Extremely Difficult to Obtain Higher T_c? 40
References 41

2 Crystal Structure of High Temperature Superconductors 43
2.1 Introduction 43
2.1.1 Perovskite Structure 43
2.2 The Structure of YBa$_2$Cu$_3$O$_{7-x}$ 43
2.2.1 Variation of T_c with Oxygen Stoichiometry 46
2.3 The Structure of La$_{2-x}$M$_x$CuO$_4$ 47
2.4 The Structure of Bi-Based Cuprate Superconductors 49
2.5 Structure of Thallium-Based Cuprate Superconductors 50
2.5.1 Comparison of Bismuth and Thallium Based Cuprates 52
2.6 Mercury Based Cuprate Superconductors 53
2.7 Characteristics of High Temperature Superconductors 55
2.7.1 Resemblance Between HTSC and Conventional Superconductors 56
2.7.2 Unusual Properties of HTSCs 57
2.8 Fermi Energy and Fermi Velocity of Superconductors 57
2.9 Comparison of High T_c Cuprates with Typical Metals in Relation to Normal State Resistivity 59
References 59

3 Critical Current 61
3.1 Introduction 61
3.2 Critical Current of a Wire 62
3.3 Critical Current in Mixed State 63
3.4 Flux Pinning 63
3.4.1 Role of Inhomogeneties 64
3.4.2 Flux Pinning (Pinning of Flux-Vortices in Conventional Superconductors) 65
3.5 Depinning of Flux Vortices 65
3.6 Critical Current in High Temperature Superconductors 67
3.6.1 Effect of Structure 67
3.7 RSJ Model of an HTSC (High T_c Superconductor) 68
3.8 Effect of Granularity on Superconductivity 71
3.9 Measurement for J_c 72
3.10 Flux Flow and Defining J_c 72
3.11 Anisotropies in High T_c Superconductors 73
3.12 Flux Pinning in High Temperature Superconductors 75
3.13 Columnar Defects and Flux Pinning 76
3.13.1 Flux Pinning in HTSCs by Vortex Pancakes 78
3.14 Experimental Results on Introduction of Flux Pinning Centers in HTSCs .. 80
3.14.1 Melt Textured Growth .. 80
3.14.2 Introduction of Second Phase (Chemical Inhomogeneity) 81
3.14.3 Extended Defects (Columnar Defects) 81
3.15 Magnetic Phase Diagrams of HTSCs 81
3.16 Melting of the FLL Because of Reduced Size of $\xi_{GL}(T)$ 83
3.16.1 Effect of Reduced Size of $\xi_{GL}(T)$ 84
3.17 Kosterlitz–Thouless–Berezinski Transition 84
3.18 Anisotropy and Change Over from a 2D to 3D Behaviour 3.18.1 High Field Regime ($B \gg B_{cr}$) 85
3.18.2 Weak Field Region ($B \ll B_{cr}$) 86
3.18.3 The Cross-Over Field B_{cr} ... 87
3.19 The Effect of Anisotropy Parameter γ on the Vortex Phase Transitions ... 87
3.20 Desired Microstructure Synthesis for High Critical Current Density in High T_c Superconductors 88
3.20.1 Some Inherent Problems (Weak-Links and “Flux Lattice Melting”) ... 88
3.20.2 Possible Ways Out of “Weak-Links” 90
3.20.3 Provision of Flux Pinning Sites 94
3.20.4 Desired Microstructure for High J_c 95
3.21 High T_c Technology .. 96
3.21.1 Advantage of Weak Pinning 97
3.22 Comparison Between Non-Uniform Order in a Solid and That in a Superconductor ... 98
References .. 99

4 Synthesis of High T_c Superconductors 101
4.1 Synthesis of $Y_1Ba_2Cu_3O_7$ in Bulk Form 101
4.2 Why Thin Films of High T_c Superconductors? 102
4.3 Techniques for Thin Film Preparation 103
4.3.1 Chemical Deposition Methods 105
4.3.2 Chemical Vapour Deposition 105
4.3.3 Spray Pyrolysis .. 105
4.4 Basic Thin Film Processes for HTSC Films 106
4.5 Various Techniques for Deposition of Films of High Temperature Superconductors .. 108
4.6 Preparation of Thin Films of HTSC-YBa$_2$Cu$_3$O$_{7-x}$:

An Introduction ... 108
4.6.1 Choice of the Substrate for Thin Film Deposition 110
4.6.2 YBCO Film/Substrate Interaction 110

4.7 Techniques Employed for Synthesis of YBCO Thin Films 113

4.7.1 Electron Beam Evaporation 113
4.7.2 Molecular Beam Epitaxy 114
4.7.3 Sputter Deposition ... 115
4.7.4 Sputter Deposition of HTSC Films 118
4.7.5 Pulsed Laser Deposition 119
4.7.6 Chemical Vapour Deposition 120

4.8 Film Substrate Lattice Matching and Buffer Layer
Considerations .. 121

4.9 “Brick-Wall” Microstructure in Epitaxial YBa$_2$Cu$_3$O$_x$ Films 123

4.10 “ABSTRACTS” of Author’s Papers on Superconductivity 125

References ... 127

5 Superconductivity in Cuprates .. 129

5.1 Mott Insulator .. 129
5.2 The First Cuprate La$_{2-x}$M$_x$CuO$_4$ 129
5.3 The Charge-Transfer Model of a High T_c
Cuprate Superconductor .. 130

5.4 Electron and Hole Doping of CuO$_2$ Layers 132

5.4.1 Source of Hole (Carriers) in Various
Cuprate Families ... 132

5.5 The Conductions Plane in Cuprates 133
5.6 Octahedral Ligand Field .. 134
5.7 Jahn–Teller Effect ... 135
5.8 Energy Levels for Copper 136
5.9 Comparison of Cu$^{3+}$ and Cu$^{2+}$ Ions in the Oxide
Octahedron ... 136

5.10 The Hamiltonian and the Relevant Energy Levels
in the Conduction Plane ... 136
5.11 Hole Superconductivity in Oxides 139
5.12 Two Band and One Band Hubbard Models 140
5.13 The Electronic Structure of Cuprates 140
5.14 Strong Electron Correlations 142
5.15 Charge Density Wave and Spin Density Wave 143
5.16 Variation of T_c with Hole Concentration 144
5.16.1 Role of CuO$_2$ Planes (Effect on T_c) 145
5.17 Defects in Bi Based Superconductors 146
5.18 Effect of Oxygen Stoichiometry on T_c of HTSCs
Bi Based and Ti Based Superconductors 147
8 Application of Superconductivity .. 241
 8.1 Potential Applications .. 241
 8.1.1 Superconducting Magnets 241
 8.2 Applications of High-T_c Oxide Superconductors 242
 8.3 Applications of High T_c Films 243

Appendix A: Quasiparticles .. 245

Appendix B: Fermiology .. 247

Appendix C: Pairing in High T_c Cuprates in Relation to Fermi Energy .. 249

Index ... 251
High-Temperature Superconductors
Saxena, A.K.
2012, XVIII, 258 p., Hardcover
ISBN: 978-3-642-28480-9