Contents

1 Introduction .. 1
 1.1 Invariance Examples .. 2
 1.1.1 A Chess Board Problem 2
 1.1.2 A Black and White Balls Game 4
 1.2 The Way Ahead ... 5

2 Background ... 7
 2.1 Predicates .. 8
 2.1.1 Propositional Calculus .. 8
 2.1.2 Predicate Calculus ... 10
 2.1.3 Predicates Define Sets of States 10
 2.1.4 Strong and Weak Predicates 11
 2.2 Specifying Pre- and Postconditions 14
 2.2.1 Hoare Triples as Specifications of Total Correctness 14
 2.2.2 Weakest Preconditions and Semantics 16
 2.3 Guarded Command Language .. 17
 2.3.1 Empty Command .. 18
 2.3.2 Diversion: Some Extreme Cases 18
 2.3.3 Assignment .. 24
 2.3.4 Composition ... 27
 2.3.5 Selection ... 30
 2.3.6 Repetition .. 32
 2.4 Refinement Rules ... 34
 2.4.1 Strengthen Postcondition Rule 35
 2.4.2 Weaken Precondition Rule 36
 2.4.3 Skip Rule .. 36
 2.4.4 Sequences of Refinements 37
 2.4.5 Refinement and Weakest Preconditions 37
 2.4.6 Assignment Rule .. 37
 2.4.7 Composition Rule ... 38
 2.4.8 Following Assignment Rule 40
4 Intermediary Examples

4.1 Dutch National Flag

- **Formulating the Problem** ... 96
- **Choosing the Invariant** ... 98
- **Refining the Specification** .. 99
- **Proving the Third Guard Command** 100
- **Putting it All Together** ... 102
- **Discussion** ... 102

4.2 Longest Segment

- **Formulating the Problem** ... 104
- **A First Attempt at Refinement** .. 105
- **A Revised Attempt at Refinement** 107
- **Putting it All Together** ... 111
- **Discussion** ... 112

4.3 Palindromes

- **The Outer Loop** ... 113
- **Formulating the Problem** ... 113
- **Refining the Specification** .. 115
- **Putting it All Together** ... 116
- **Discussion** ... 117

4.4 Raster Lines

- **Formulating the Problem** ... 118
- **Deriving the Loop** ... 121
- **Developing the Loop’s Body** .. 122
- **Putting it All Together** ... 125
- **Discussion** ... 126

4.5 Raster Circle

- **Problem Statement** ... 127
- **From Invariant to Loop** ... 129
- **Refining the Loop’s Body** .. 129
- **Determining the Guards** .. 132
- **Deriving the Guards** ... 133
- **Putting it All Together** ... 134

4.6 Majority Voting

- **Formulating the Problem** ... 137
- **Arriving at an Invariant and Developing the Loop** 138
- **Developing the Guards** ... 139
- **Discussion** ... 143

4.7 Computational Geometry

- **Background and Notation** .. 144
- **The Approach to Solving the Problem** 146
- **Deriving the Solution Constructively** 147
- **Discussion** ... 150

4.8 Revision Exercises

- ... 151
5 Procedures and Recursion .. 161
 5.1 Introduction ... 161
5.2 Procedures ... 162
 5.2.1 Parameterless Procedures 162
 5.2.2 Pass by Value .. 164
 5.2.3 Pass by Result ... 167
 5.2.4 Pass by Value Result .. 168
 5.2.5 Functions .. 169
5.3 Procedure Refinement Strategy .. 170
5.4 Recursive Procedures ... 171
5.5 Terminating Recursive Programs 173
5.6 Recursive Examples ... 177
 5.6.1 Factorial.. 177
 5.6.2 Searching a List ... 181
 5.6.3 Evaluating an Expression Tree 185
 5.6.4 MergeSort.. 191
5.7 Conclusion .. 194

6 Case Study: Lattice Cover Graph Construction 197
 6.1 Introduction ... 197
 6.2 Preliminaries .. 198
 6.2.1 Lattices ... 198
 6.2.2 Set Intersection-Closed Lattices 201
 6.3 The Algorithm ... 205
 6.3.1 The Basic Structure ... 206
 6.3.2 Articulating and Attaining $inv1(i)$ 207
 6.3.3 Articulating and Attaining $inv2(i)$ 208
 6.3.4 Filling in S_1 .. 210
 6.3.5 Completing the Select Command 211
 6.3.6 The Completed Algorithm 214
 6.3.7 The Operational Implications 215
 6.4 Refactoring ... 218
 6.4.1 Efficiently Inserting $C_i \cap X$ 218
 6.4.2 Finding the Parent of X 219
 6.4.3 Discussion ... 221
 6.5 A Gentle Introduction to Formal Concept Analysis 222

7 Case Study 2: Classifying MADFA Construction Algorithms 227
 7.1 Introduction ... 227
 7.2 From DFAs to MADFAs .. 228
 7.2.1 Deterministic Finite Automata—DFAs 228
 7.2.2 Acyclic Deterministic Finite Automata—ADFAs 230
 7.2.3 Minimum Acyclic Deterministic Finite Automata—MADFAs 231
 7.2.4 Concepts for MADFA Construction Algorithms 232
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3 An Abstract MADFA Construction Algorithm</td>
<td>237</td>
</tr>
<tr>
<td>7.3.1 Structural Invariant Instantiations</td>
<td>239</td>
</tr>
<tr>
<td>7.3.2 The Procedures to be Instantiated</td>
<td>241</td>
</tr>
<tr>
<td>7.3.3 The Importance of the Skeleton-Based Taxonomy</td>
<td>241</td>
</tr>
<tr>
<td>7.4 Trie Intermediate ADFA</td>
<td>242</td>
</tr>
<tr>
<td>7.4.1 Procedure add_word_T</td>
<td>242</td>
</tr>
<tr>
<td>7.4.2 Adding Only Prefix Words</td>
<td>244</td>
</tr>
<tr>
<td>7.4.3 Adding a Non-prefix Word in a Trie</td>
<td>244</td>
</tr>
<tr>
<td>7.4.4 Procedure cleanup_T</td>
<td>246</td>
</tr>
<tr>
<td>7.4.5 An Example</td>
<td>249</td>
</tr>
<tr>
<td>7.5 Arbitrary Intermediate ADFA</td>
<td>250</td>
</tr>
<tr>
<td>7.5.1 Procedure add_word_N</td>
<td>251</td>
</tr>
<tr>
<td>7.5.2 Procedure cleanup_N</td>
<td>255</td>
</tr>
<tr>
<td>7.5.3 Commentary</td>
<td>255</td>
</tr>
<tr>
<td>7.6 Word Adding Based on a Partial Order</td>
<td>255</td>
</tr>
</tbody>
</table>

References 259

Index 263
The Correctness-by-Construction Approach to Programming
Kourie, D.G.; Watson, B.W.
2012, XIV, 266 p., Hardcover
ISBN: 978-3-642-27918-8