Contents

1 Introduction .. 1
 1.1 Why Porous Materials? 1
 1.2 Aims and Scopes 2
 1.3 Book Contents and Structure 3
 Reference ... 4

2 Fundamentals of Porous Structures 5
 2.1 Introduction 5
 2.2 Cell Models 5
 2.3 Digital Reconstruction (Lattice Boltzmann Method)
 of the Porous Structure 9
 2.3.1 Porous Media Generation 10
 2.4 Stochastic Modeling 11
 2.4.1 The Pore Space 13
 2.4.2 Transport Properties 17
 References .. 18

3 Flow in Porous Media 23
 3.1 Introduction 23
 3.1.1 Macroscopic Description 24
 3.1.2 Microscopic Description 25
 3.2 Analytical Solutions for Single Phase Flow in Cell Models 25
 3.2.1 Sphere-in-Cell Models: Kuwabara’s Approach 26
 3.2.2 Sphere-in-Cell Models: Happel’s Approach 27
 3.2.3 Cylinder-in-Cell Models 29
 3.2.4 Spheroid-in-Cell Model 29
 3.3 Single Phase Flow in Granular Structures 33
 3.3.1 Representation of 3-D Sphere Assemblages 33
 3.3.2 The Flow Field 34
 3.3.3 Results and Discussion 37
 References .. 37
4 Transport Phenomena in Porous Structures

4.1 Introduction

4.2 Diffusion

4.2.1 Constrictivity Factor

4.2.2 Tortuosity Factor

4.2.3 Porosity Factor

4.2.4 Diffusion in Semi-Infinite Porous Media

4.2.5 Diffusion in a Plane Sheet

4.2.6 Diffusion in a Cylinder

4.2.7 Diffusion in a Sphere

4.3 Axial Dispersion

4.3.1 Parameters Influencing Axial Dispersion:

4.3.2 Parameters Influencing Axial Dispersion:

4.4 Radial Dispersion

4.4.1 Parameters Influencing Radial Dispersion:

4.4.2 Parameters Influencing Radial Dispersion:

4.5 Dispersion in Packed Beds Flowing by Non-Newtonian Fluids

4.6 Correlations

4.6.1 New Correlations: Axial Dispersion

4.6.2 New Correlations: Radial Dispersion

References

5 Modeling of Transport Processes in Porous Materials

5.1 Introduction

5.2 Single Phase Transport in Unit Cells

5.2.1 Fundamental Quantities

5.2.2 Adsorption Mechanisms

5.2.3 Mass Transport Through Spheres

5.2.4 Mass Transport Through Cylinders

5.2.5 Mass Transport Through Spheroids

5.2.6 Single Phase Mass Transport in Other-Type Unit Cells

5.3 Single Phase Flow in Granular Structures

5.4 Macroscopic Quantities for Single Phase Transport

5.4.1 Stochastically Constructed 3-D Sphere Assemblage

5.4.2 The Flow Field (Single Phase Flow)

5.4.3 Mathematical Formulation

5.4.4 The Volume-Averaging Procedure
5.4.5 Simulations ... 116
5.4.6 Results and Discussion 117
References .. 120

6 Experimental and Numerical Investigation of Mass Transport in Porous Media .. 123

6.1 Measurement of Molecular Diffusion Coefficients 123
6.1.1 Diffusion Alone .. 124
6.1.2 Diffusion with Convection 125
6.1.3 Experiments .. 126

6.2 Measurement of Dispersion Coefficients (Axial and Radial) 128
6.2.1 Measurement of Axial Dispersion Coefficients 128
6.2.2 Measurement of Radial Dispersion Coefficients 131

6.3 Measurement of Solubility at Different Temperatures 141
6.3.1 Mass Transfer Around a Buried Soluble Sphere 142
6.3.2 Experimental Set-Up 143

6.4 Measurement of Tortuosity in Porous Media 145
6.4.1 Experimental Example 148

6.5 Mass Transfer Around Active Solids 149
6.5.1 Mass Transfer From a Soluble Flat Slab 149
6.5.2 Mass Transfer From a Soluble a Cylinder Aligned With Flow .. 154
6.5.3 Mass Transfer From a Soluble Sphere 157
6.5.4 Mass Transfer From a Cylinder in Cross Flow 159
6.5.5 Mass Transfer From a Prolate Spheroid 162
6.5.6 Mass Transfer From an Oblate Spheroid 167

References .. 171

7 Applications and Examples 175

7.1 Contaminant Plume Sizes Associated to Different Active Solids .. 175
7.1.1 Concentration Profiles From a Soluble Flat Slab 176
7.1.2 Concentration Profiles From a Cylinder Aligned With Flow .. 178
7.1.3 Concentration Profiles From a Soluble Sphere 178
7.1.4 Concentration Profiles From a Cylinder in Cross Flow 179
7.1.5 Concentration Profiles From a Prolate Spheroid 180
7.1.6 Concentration Profiles From an Oblate Spheroid 181

7.2 Rising Damp in Building Walls 182
7.2.1 Rising Damp Theory 183
7.2.2 The Wall Base Ventilation System 184
7.2.3 Numerical Simulation 187
7.2.4 Rising Damp Analysis 187
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Bubbles and Drops in Porous Structures</td>
<td>194</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Moments of Distribution (S_γ)</td>
<td>195</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Determination of Source Terms</td>
<td>197</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Simulations</td>
<td>198</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Algorithm Validation and Findings</td>
<td>202</td>
</tr>
<tr>
<td>7.4</td>
<td>Fluid Flows Through Porous Media in Fuel Cells</td>
<td>206</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Solid Oxide Fuel Cell Configuration</td>
<td>208</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Electrochemical and Surface Reactions</td>
<td>208</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Transport Phenomena in Gas Channels</td>
<td>210</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Transport Phenomena in Porous Media</td>
<td>211</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Simulations</td>
<td>214</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Results and Discussion</td>
<td>215</td>
</tr>
<tr>
<td>7.5</td>
<td>Multi Phase Transport in Porous Media</td>
<td>217</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Theoretical Background</td>
<td>218</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Formulation of the Problem</td>
<td>220</td>
</tr>
<tr>
<td>7.5.3</td>
<td>The Closure Problems</td>
<td>221</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Results and Discussion</td>
<td>223</td>
</tr>
</tbody>
</table>

References | 229 |

Index | 235 |
Transport Processes in Porous Media
Coutelieris, F.A.; Delgado, J.M.P.Q.
2012, XII, 236 p., Hardcover
ISBN: 978-3-642-27909-6