Contents

Introduction 1
 Ferdinand Rivera and Helen Forgasz
 References 3

Part I Equity and Gender
 Helen Forgasz and Ferdinand Rivera

Preface to “Moving Towards a Feminist Epistemology of Mathematics” . 9
 Diana B. Erchick
 1 Feminism/Gender/Connected Social Constructs 10
 2 Mathematics/Equity/Social Justice Pedagogies 11
 3 Instruction/Perspectives on Mathematics/Testing 12
 References 13

Moving Towards a Feminist Epistemology of Mathematics 15
 Reprinted from ZDM (2008), 40(4)
 Leone Burton
 1 Introduction 15
 2 Adopting a Cultural View of Mathematics 17
 3 Knowing Science and Mathematics 20
 4 Being a Mathematician 22
 5 The Epistemological Challenge 25
 References 28

Preface to “Equity in Mathematics Education: Unions and Intersections of Feminist and Social Justice Literature” 31
 Laura Jacobsen
 1 Introduction to Math for Social Analysis 33
 2 Introduction to MEPI Research 34
 3 Theoretical and Practical Challenges 35
 4 Final Thoughts 36
 References 37
Equity in Mathematics Education: Unions and Intersections of Feminist and Social Justice Literature

Reprinted from ZDM (2008), 40(4)

Laura Jacobsen Spielman

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>2 Gender Differences in Mathematics</td>
</tr>
<tr>
<td>3 Situating Gender Equity Within Broader Equity Concerns</td>
</tr>
<tr>
<td>4 Global Picture of Gender Equity</td>
</tr>
<tr>
<td>5 Reconstructing Mathematics: Mathematics Education in the Public Interest</td>
</tr>
<tr>
<td>5.1 Setting New Goals in Mathematics Education</td>
</tr>
<tr>
<td>5.2 Why Mathematical Literacy?</td>
</tr>
<tr>
<td>5.3 Why Critical Literacy?</td>
</tr>
<tr>
<td>5.4 Why Community Literacy?</td>
</tr>
<tr>
<td>5.5 Unions and Intersections of Feminist and Social Justice Literature</td>
</tr>
<tr>
<td>6 Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Preface to “Adolescent Girls’ Construction of Moral Discourses and Appropriation of Primary Identity in a Mathematics Classroom”

Jae Hoon Lim

References | 61 |

Adolescent Girls’ Construction of Moral Discourses and Appropriation of Primary Identity in a Mathematics Classroom

Reprinted from ZDM (2008), 40(4)

Jae Hoon Lim

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>1.1 Theoretical Framework: Bakhtin’s Theory of Language and Identity</td>
</tr>
<tr>
<td>2 Methodology</td>
</tr>
<tr>
<td>3 The Teacher and Classroom Contexts</td>
</tr>
<tr>
<td>4 Three Students</td>
</tr>
<tr>
<td>4.1 Jessica: They Call Us “Smarties”</td>
</tr>
<tr>
<td>4.2 Stella: Between Two Worlds</td>
</tr>
<tr>
<td>4.3 Amanda: Political Dissent</td>
</tr>
<tr>
<td>5 Discussion</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Shall We Do Politics or Learn Some Maths Today? Representing and Interrogating Social Inequality

Paul Dowling and Jeremy Burke

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Strategies of Representation</td>
</tr>
<tr>
<td>2 Texts, Contexts and Patriarchy</td>
</tr>
<tr>
<td>3 Putting the Class into Texts</td>
</tr>
<tr>
<td>4 Critical Mathematics Education?</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>
Commentary on the Chapter by Paul Dowling and Jeremy Burke, “Shall We Do Politics or Learn Some Maths Today? Representing and Interrogating Social Inequality”105
Bill Atweh
1 Mathematics and the World ..105
2 Mathematics Education and Social Justice106
References ...109

Commentary on the Chapter by Dowling and Burke, “Shall We Do Politics or Learn Some Maths Today? Representing and Interrogating Social Inequality”111
Joanne Rossi Becker
References ...114

Gender Role Stereotypes in the Perception of Mathematics: An Empirical Study with Secondary Students in Germany115
Gabriele Kaiser, Maren Hoffstall, and Anna B. Orschulik
1 State of the Art ...115
2 Design of the Study ...117
 2.1 Description of the Instrument and Data Analysis117
 2.2 Description of the Sample120
3 Central Results of the Quantitative Study121
4 Gender-Specific Differences in the Perception of Mathematics: Qualitative Results ..130
 4.1 General Results ...130
 4.2 Analysis of Reasons ..132
5 Possible Educational Consequences136
Appendix ..138
References ...140

Commentary on the Chapter by Gabriele Kaiser, Maren Hoffstall and Anna B. Orschulik, “Gender Role Stereotypes in the Perception of Mathematics—Results of an Empirical Study with Secondary Students in Germany”141
Sarah Theule Lubienski
References ...144

Commentary on the Chapter by Gabriele Kaiser, Maren Hoffstall, and Anna B. Orschulik, “Gender Role Stereotypes in the Perception of Mathematics: Results of an Empirical Study with Secondary Students in Germany”145
Colleen Vale
1 Affective Factors Matter ...145
2 Impact of Affective Factors ...147
References ...148
Students’ Attitudes, Engagement and Confidence in Mathematics and Statistics Learning: ICT, Gender, and Equity Dimensions

Anastasios N. Barkatsas

Contents

1 Background and Context of the Chapter

1.1 The MTAS Hypothesised Model

2 Selected Research Findings

2.1 (I) MTAS Studies: Aims, Methods, Samples, Data Analyses and Findings

2.2 Study 1. The Development of the MTAS Scale

2.3 Study 2. Investigating the Complex Relationship Between Students’ Mathematics Confidence, Confidence with Computers, Attitude to Learning Mathematics with Computers, Affective Engagement, and Behavioural Engagement, Achievement, Gender, and Year Level Using MTAS

2.4 Study 3. Attitudes to Using CAS Calculators in the Classrooms of Middle and Senior Secondary Mathematics Students

2.5 (II) Survey of Attitudes Toward Statistics [SATS] Scale Studies: Aims, Methods, Samples, Data Analyses and Findings

2.6 Study 4. The Construct Validity of the SATS

2.7 Study 5. Postgraduate Students’ Attitudes Toward Statistics

3 What do the Findings from the Five Studies Tell Us? Conclusions and Implications

3.1 Secondary Mathematics Students’ Attitudes, Engagement and Use of ICT for Learning Mathematics

3.2 Tertiary Students’ Attitudes Toward Statistics

Appendix 1 Mathematics and Technology Attitudes Scale

Appendix 2 Factor Structure of the MTAS Scale

References

Commentary on the Chapter by Anastasios Barkatsas, “Students’ Attitudes, Engagement and Confidence in Mathematics and Statistics Learning: ICT, Gender, and Equity Dimensions”

Kenneth Ruthven

References

Commentary on the Chapter by Anastasios Barkatsas, “Students’ Attitudes, Engagement and Confidence in Mathematics and Statistics Learning: ICT, Gender, and Equity Dimensions”

Hazel Tan

1 Theoretical Basis of MTAS

2 Theoretical Basis of SATS

3 Implications for Equitable Policy and Practice

References
Part II Equity and Culture
Ferdinand Rivera and Helen Forgasz

Preface to “Israeli Jewish and Arab Students’ Gendering of Mathematics” ... 199
David Mittelberg and Helen Forgasz
References ... 201

Israeli Jewish and Arab Students’ Gendering of Mathematics .. 203
Reprinted from ZDM (2008), 40(4)
Helen J. Forgasz and David Mittelberg
1 Introduction .. 203
1.1 Contextualising the Study ... 204
1.2 Gendered Beliefs About Mathematics 207
2 Aims and Methods .. 209
2.1 Instruments .. 209
2.2 Sample ... 212
2.3 Data Analyses .. 212
3 Results and Discussion ... 212
3.1 Israeli and Australian Grade 9 Students’ Perception of Mathematics Achievement 212
3.2 Perceptions of Mathematics Achievement: Ethnic Comparisons .. 213
3.3 Results from the Two Instruments 213
3.4 Mathematics as a Gendered Domain: Gender Differences Within Ethnic Groups 215
3.5 Gender Differences Among Israeli Jews 219
3.6 Gender Differences Among Israeli Arabs 220
4 Conclusions and Implications .. 220
Appendix .. 222
References .. 224

Preface to “Ethnomathematics and Philosophy” ... 227
Bill Barton
References .. 229

Ethnomathematics and Philosophy ... 231
Reprinted from ZDM (1999), 31(2)
Bill Barton
1 The Problems and the Challenge 231
2 Existing Philosophical Positions 233
3 An Alternative Model ... 235
4 Deconstructing the Past ... 236
5 What Is the Evidence? .. 237
6 Exciting Horizons .. 238
References .. 239
Preface to “Cultural Differences, Oral Mathematics, and Calculators in a Teacher Training Course of the Brazilian Landless Movement” 241
Gelsa Knijnik and Fernanda Wanderer
References 244

Cultural Differences, Oral Mathematics, and Calculators in a Teacher Training Course of the Brazilian Landless Movement 245
Reprinted from ZDM (2005), 37(2)
Gelsa Knijnik, Fernanda Wanderer, and Claudio José de Oliveira
1 Introduction 245
2 Cultural Differences and Oral Mathematics 246
3 The Empirical Part of the Research 249
4 The Peasant’s Oral Mathematics Practices 251
5 Oral Mathematics and the Calculator in the Teacher Training Course 254
6 Final Words 256
References 257

Preface to “Immigrant Parents’ Perspectives on Their Children’s Mathematics Education” 261
Marta Civil, Núria Planas, and Beatriz Quintos
References 265

Immigrant Parents’ Perspectives on Their Children’s Mathematics Education 267
Reprinted from ZDM (2005), 37(2)
Marta Civil, Núria Planas, and Beatriz Quintos
1 Introduction 267
2 Theoretical Framework 269
3 Context and Method 270
4 Results: “Before and Now” 272
4.1 About the Teaching of Mathematics 274
4.2 About the Language 277
5 Conclusion 280
References 281

Mathematics Education for Adults: Can It Reduce Inequality in Society? 283
Wolfgang Schlöglmann
1 Introduction 283
2 Lifelong Learning: A Consequence of Technological Development and Globalisation? 284
3 Mathematics and Society: Some Remarks 286
3.1 The Development of Mathematics as a Tool for Economic Growth—The Relationship to Culture 286
3.2 What Kind of Society Needs Mathematics as a Tool? 288
3.3 Mathematics and Democracy 288
3.4 Mathematics and New Technologies: New Functions of the Tool “Mathematics” 289
3 Viewing Orchestration in Language Policy Versus Mathematics Classroom Practice .. 336
4 Viewing Orchestration in Language for Learning Mathematics Versus Getting On in the World 336
References ... 337

Commentary on the Chapter by Richard Barwell, “Heteroglossia in Multilingual Mathematics Classrooms” 339
Luis Radford
1 Language in the Mathematics Classroom 339
2 Language as *Ideological* .. 340
3 Altery .. 341
References ... 342

Part III Equity and Curriculum Diversity
Ferdinand Rivera and Helen Forgasz

Preface to “Doubtful Rationality” .. 347
Ole Skovsmose
References ... 350

Doubtful Rationality ... 351
Reprinted from ZDM (2007), 39(3)
Ole Skovsmose
1 Fabrication by Mathematics-Based Rationality 353
1.1 Fabricating Possibilities .. 353
1.2 Fabrication of Strategies .. 354
1.3 Fabricating Facts .. 355
1.4 Fabrication of Contingencies 356
1.5 Fabrication of Perspectives ... 356
2 Prescription Readiness .. 357
3 Differentiated Labelling .. 359
4 Ethical Filtration ... 360
5 Citizenship and Critical Citizenship 362
6 Conclusions ... 365
References ... 366

Preface to “A Socio-Political Look at Equity in the School Organization of Mathematics Education” 369
Paola Valero
References ... 371

A Socio-Political Look at Equity in the School Organization of Mathematics Education ... 373
Reprinted from ZDM (2007), 39(3)
Paola Valero
1 Introduction ... 373
2 Mathematics Education as Social and Political Practices: A Theoretical and Methodological Framework 374
3 Studying Equity in the Network of School Mathematics Education Practices .. 376
 3.1 The Lonely Girl .. 377
 3.2 They Are Creeping into 378
 3.3 Entering the Discussion of Equity in Mathematics Education Research 379
 3.4 Examining the Construction of Disadvantage in the School Organization of Mathematics Education 380
4 Power and Equity in Mathematics Education Research 385
References ... 385

Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM 389
Gilah C. Leder
1 Introduction ... 389
2 ZDM ... 390
 2.1 ZDM—1990 to 1999 .. 391
 2.2 ZDM—2000 to 2009 .. 395
 2.3 Mathematically Gifted Students—A Matter of Convenience in Problem Solving 398
 2.4 Mathematically Gifted Students—Miscellaneous Issues .. 400
3 Concluding Comments ... 403
References ... 403

Commentary on the Chapter by Gilah Leder, “Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM” .. 407
Boris Koichu
1 What Counts for Gold? .. 408
2 More Gold Is in the Mine .. 409
References ... 410

Commentary on the Chapter by Gilah Leder, “Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM” .. 411
Rosemary Callingham
References ... 413

From the Known to the Unknown: Pattern, Mathematics and Learning in Papua New Guinea .. 415
Graeme Were
1 Mathematics in the Pacific 417
2 Pattern in New Ireland, Papua New Guinea 420
3 Concluding Comments: Toward the Mathematical Mind 425
References ... 427
Commentary on the Chapter by Graeme Were, “From the Known to the Unknown: Pattern, Mathematics and Learning in Papua New Guinea” .. 429
Alan J. Bishop
References ... 431

Commentary on the Chapter by Graeme Were, “From the Known to the Unknown: Pattern, Mathematics and Learning in Papua New Guinea” .. 433
Steven K. Khan
1 Patterns in a Field .. 433
2 The Mathematical Mind: An Issue for Equity 435
References ... 437

Part IV Equity and Biology
Helen Forgasz and Ferdinand Rivera

Gender Differences in Mathematics and Science Achievement
Across the Distribution: What International Variation Can Tell Us
About the Role of Biology and Society .. 441
Andrew M. Penner and Todd CadwalladerOlsker
1 Introduction .. 441
2 The Biological Production of Gender Differences in Mathematics . 444
 2.1 Genetic Considerations .. 444
 2.2 Hormonal Considerations .. 445
 2.3 Cerebral Considerations .. 445
3 The Social Production of Gender Differences in Mathematics 446
 3.1 Incentive Structures .. 446
 3.2 Status .. 447
4 Data .. 447
 4.1 Mathematics and Science Data .. 448
 4.2 Country-Level Data .. 449
 4.3 Modeling Strategy and Precedents 450
5 Results .. 452
 5.1 Basic Descriptive Statistics .. 452
 5.2 Examining the Distribution Extremes 454
 5.3 Modeling Cross-National Gender Differences Across the Distribution .. 457
6 Discussion .. 461
Appendix ... 464
References ... 466

Commentary on the Chapter by Penner and CadwalladerOlsker, “Gender Differences in Mathematics and Science Achievement Across the Distribution: What International Variation Can Tell Us About the Role of Biology and Society” .. 469
James S. Dietz
References ... 472
Commentary on the Chapter by Penner and Cadwallader Olsker, “Gender Differences in Mathematics and Science Achievement Across the Distribution: What International Variation Can Tell Us About the Role of Biology and Society”

Robert (Bob) Klein

1. The Problem of Scope and Scale
2. The Pushmi-Pullyu Except This Thing Has TWO Tails
3. Conclusion

References

Research-Based Mathematics Instruction for Students with Learning Disabilities

Marjorie Montague and Asha K. Jitendra

1. Characteristics of Children and Adolescents with MLD
2. Research-Based Math Instruction for Students with MLD
3. Direct Instruction Research in Mathematics
4. Cognitively Based Math Problem Solving Research
 - 4.1 Cognitive Strategy Instruction (CSI)
 - 4.2 Research Evidence in Support of CSI for Math Problem Solving
 - 4.3 Schema-Based Instruction (SBI)
 - 4.4 Research Evidence in Support of SBI for Math Problem Solving
5. Recommendations for Instructing Students with LD

References

Commentary on the Chapter by Marjorie Montague and Asha K. Jitendra, “Research-Based Mathematics Instruction for Students with Learning Disabilities”

Ann Dowker

References

Commentary on the Chapter by Marjorie Montague and Asha K. Jitendra, “Research-Based Mathematics Instruction for Students with Learning Disabilities”

Delinda van Garderen

1. Building on and Extending the Cognitively Based Research in Math Problem Solving
2. Promoting Instruction for Students with Disabilities: Implications Beyond the Classroom

References

Neural Correlates of Gender, Culture, and Race and Implications to Embodied Thinking in Mathematics

Ferdinand Rivera

1. Introduction
2. Analyzing Issues in Mathematics Education from a Neuroscience Perspective

References
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Neural Correlates of Mathematical Concepts and Processes</td>
<td>527</td>
</tr>
<tr>
<td>3.1</td>
<td>Mathematical Processing</td>
<td>527</td>
</tr>
<tr>
<td>3.2</td>
<td>Linguistic Processing</td>
<td>530</td>
</tr>
<tr>
<td>3.3</td>
<td>Visuospatial Processing</td>
<td>530</td>
</tr>
<tr>
<td>4</td>
<td>Neural Correlates of Gender, Culture, and Race</td>
<td>531</td>
</tr>
<tr>
<td>4.1</td>
<td>Gender</td>
<td>531</td>
</tr>
<tr>
<td>4.2</td>
<td>Race</td>
<td>533</td>
</tr>
<tr>
<td>4.3</td>
<td>Culture</td>
<td>534</td>
</tr>
<tr>
<td>5</td>
<td>Implications for Mathematics Education Research</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>539</td>
</tr>
</tbody>
</table>

Commentary on the Chapter by Ferdinand Rivera, “Neural Correlates of Gender, Culture, and Race and Implications to Embodied Thinking in Mathematics”

Bert De Smedt and Lieven Verschaffel

References 549

Commentary on the Chapter by Ferdinand Rivera, “Neural Correlates of Gender, Culture, and Race and Implications to Embodied Thinking in Mathematics”

Stephen R. Campbell

References 555

Editors and Contributors 557

List of Reviewers 569

Author Index 571

Subject Index 591
Towards Equity in Mathematics Education
Gender, Culture, and Diversity
Forgasz, H.; Rivera, F. (Eds.)
2012, XVIII, 598 p., Hardcover
ISBN: 978-3-642-27701-6