Contents

1 Introduction .. 1
 1.1 Scope of the Book . .. 2
 1.2 Degradation of Speech Signals 3
 1.3 Need for Quality Assessment and Control of Speech Signals . 4
 1.4 Organization of the Book 5
 References .. 6

2 Speech Quality ... 7
 2.1 Speech Quality Assessment 7
 2.2 Objective Speech Quality Measures 8
 2.2.1 SNR Measures 8
 2.2.2 LP-Based Measures 11
 2.2.3 Weighted Spectral Slope Measures 12
 2.2.4 Articulation Index 12
 2.2.5 Speech Transmission Index 13
 2.2.6 PESQ ... 13
 2.3 Subjective Speech Quality Measures 15
 2.3.1 Opinion Scores 15
 2.3.2 Speech Intelligibility 16
 2.4 Conclusion ... 18
 References .. 19

3 The Japanese Diagnostic Rhyme Test 21
 3.1 Rhyme Tests ... 21
 3.2 Diagnostic Rhyme Tests 21
 3.3 Japanese Consonant Taxonomy 24
 3.4 Japanese DRT Word-Pair List 25
 3.5 The Evaluation Procedure 27
 3.6 Conclusion ... 27
 References .. 28
4 The Effect of Word Familiarity on the DRT Scores
 4.1 Word Familiarity and Its Effect on Speech Intelligibility
 4.2 Experimental Procedures
 4.3 Results and Discussions
 4.4 Conclusion
 References

5 Examples of Noise-Degraded Speech Intelligibility Measurements Using the Japanese DRT
 5.1 Overview
 5.2 Experimental Setup
 5.3 Results and Discussions
 5.3.1 Comparison of Intelligibility Versus SNR by Speaker Gender
 5.4 Conclusion
 References

6 DRT Evaluation of Localized Speech Intelligibility in Virtual 3-D Acoustic Space
 6.1 Multi-Party Audio Conferencing System Using Localized Speech in 3-D Virtual Acoustic Space
 6.2 Intelligibility of Localized Speech Without Audio Coding
 6.2.1 Experimental Setup
 6.2.2 Source Placement
 6.2.3 Speech Localization Using HRTFs
 6.2.4 Localization Using Real Sources
 6.2.5 Results
 6.3 Effect of Stereo Audio Coding on Speech Intelligibility
 6.3.1 The HE-AAC Coding Standard
 6.3.2 Joint Stereo Coding
 6.3.3 Parametric Stereo Coding
 6.3.4 Speech Intelligibility of Stereo-Coded Localized Speech Without Competing Noise
 6.3.5 Speech Intelligibility of Stereo-Coded Localized Speech with Competing Noise
 6.4 Conclusion
 References

7 Other DRT Evaluation Examples
 7.1 DRT Evaluation of Efficiency of Speaker-Dependent Maskers
 7.1.1 Speaker-Dependent Babble Noise
 7.1.2 Speech Intelligibility of Speech with Maskers in Simulated Non-Reverberant Environment
 References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.3</td>
<td>Speech Intelligibility of Speech with Maskers in Actual Reverberant Environment</td>
<td>78</td>
</tr>
<tr>
<td>7.2</td>
<td>DRT Evaluation of Guide Speech Over Parametric Speaker Arrays</td>
<td>80</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Parametric Speaker Arrays</td>
<td>81</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Speech Intelligibility with Speaker Array Facing Downwards</td>
<td>82</td>
</tr>
<tr>
<td>7.2.3</td>
<td>The Effect of Beam Orientation on the Speech Intelligibility</td>
<td>86</td>
</tr>
<tr>
<td>7.3</td>
<td>Conclusion</td>
<td>91</td>
</tr>
<tr>
<td>7.4</td>
<td>References</td>
<td>91</td>
</tr>
</tbody>
</table>

8	Estimation of DRT Scores Using Objective Measures	93
8.1	Overview	93
8.2	Estimation of DRT Scores Using Objective Measures	93
8.2.1	Description of Objective Measures Used in this Study	94
8.2.2	Experimental Setup	95
8.2.3	Correlation Analysis Between Objective Measures and DRT Scores	95
8.2.4	Estimation of DRT Scores by Mapping Individual Per-Word Objective Measures	97
8.2.5	Estimation of DRT Scores by Mapping Pooled Per-Feature Objective Measures	101
8.2.6	Discussions	113
8.3	Estimation of DRT Scores Using Automatic Speech Recognition	116
8.3.1	Configuration of the Automatic Speech Recognizer for DRT Word-Pair Recognition	121
8.3.2	Experimental Setup	123
8.3.3	Recognition Accuracy of DRT Words Using the Speech Recognizer with Speaker-Independent Models	125
8.3.4	Recognition Accuracy of DRT Words Using the Speech Recognizer with Speaker-Adapted Models	127
8.3.5	Recognition Accuracy of DRT Words Using the Speech Recognizer with Speaker-and Noise-Adapted Models	131
8.3.6	Recognition Accuracy of DRT Words Using the Speech Recognizer with Multi-Condition Adapted Models	133
8.3.7	Summary of Results and Discussions	136
8.4	Conclusion	139
8.5	References	140
Subjective Quality Measurement of Speech
Its Evaluation, Estimation and Applications
Kondo, K.
2012, XIV, 154 p., Hardcover
ISBN: 978-3-642-27505-0