Contents

1 From Myth to Science: The Contribution of Mount Teide to the Advancement of Volcanology 1
 1.1 Introduction ... 1
 1.2 Teide Volcano in Classical Mythology 5
 1.3 Mt. Teide in the Pre-Hispanic World 5
 1.4 References in the Fourteenth and Fifteenth Centuries 6
 1.5 References to Teide Volcano at the Dawn of Science: The Renaissance and Baroque Periods (Sixteenth and Seventeenth centuries) 8
 1.6 The Contribution of the Great Eighteenth and Nineteenth Century Naturalists 9
 1.7 Mount Teide in the Framework of Modern Volcanology: The Twentieth and Twenty-first Centuries 14
References ... 20

2 Geological and Geodynamic Context of the Teide Volcanic Complex 23
 2.1 Introduction ... 23
 2.2 The Canary Volcanic Province 23
 2.3 Genetic Models for the Canaries 25
 2.4 Hot Spot Dynamics and Plant Radiation 26
 2.5 Absence of Significant Subsidence as a Crucial Feature in the Canaries ... 27
 2.6 Teide Volcano and the Evolution of the Canaries 28
 2.7 Tenerife Before the Construction of the Teide Volcanic Complex ... 30
 2.7.1 Shield Stage ... 30
 2.7.2 The Rejuvenation Stage of Tenerife: Las Cañadas Volcano .. 32
References ... 34
3 The Teide Volcanic Complex: Physical Environment and Geomorphology .. 37
3.1 Introduction ... 37
3.2 Geological Outline .. 38
3.3 Massive Flank Failures and Their Morphological Imprint ... 38
3.4 Origin of Las Cañadas Caldera 39
3.5 Reconstructing the Ícod Landslide and Teide Growth ... 39
3.6 La Orotava and Güímar Flank Failures 41
3.7 Morphology of Teide–Pico Viejo Central Volcano 42
3.8 Young Volcanic Landforms of the Rift Zones 43
3.8.1 Morphology of Volcanic Cones ... 44
3.8.2 Morphology of Lava Flows .. 45
3.9 Late Pleistocene and Holocene Non-Volcanic Landforms and Climatic Influences 48
3.9.1 Aeolian Landforms .. 48
3.9.2 Periglacial Landforms .. 49
3.10 Fluvial Landforms .. 50
3.10.1 Ravines (“Barrancos”) 50
3.10.2 Alluvial Fans and Debris Flows 50
References .. 54

4 Structural and Geological Elements of Teide Volcanic Complex: Rift Zones and Gravitational Collapses 57
4.1 Introduction ... 57
4.2 Oceanic Rift Zones. What are They and What Do They Represent? ... 58
4.3 Development of Rift Zones 60
4.4 Rift Zones of the Teide Volcanic Complex 64
4.4.1 The NE Rift Zone .. 64
4.4.2 Evolution of the NE Rift Zone 65
4.4.3 Decline and Dispersed Activity of the NERZ 68
4.4.4 The NW Rift Zone .. 69
4.5 Rifting and Landsliding in the TVC 70
4.6 Rifting, Landsliding and Magmatic Variation 70
References .. 71

5 Pre-Teide Volcanic Activity on the Northeast Volcanic Rift Zone .. 75
5.1 Ocean Island Rift Zones 76
5.2 Geology of the NERZ and Research Developments .. 77
5.3 Field Occurrence and Petrography of the Dykes 79
5.4 Structural Evolution of the NERZ 81
5.5 Magnetic Studies and Ages of the Dykes 81
5.6 Petrogenesis of the NERZ Magmas 83
5.7 Unravelling the NERZ from Source to Surface 89
References ... 89
8.8 General Features and Trends of the Last 2 ky of TVC Volcanism 152
References ... 152

9 Timing, Distribution and Petrological Evolution of the Teide-Pico Viejo Volcanic Complex 155
9.1 Introduction ... 156
9.2 The Significance of Felsic Volcanism in Ocean Islands 158
9.3 Petrological History of Tenerife Island Prior to Teide Formation 159
9.4 Petrological Description of the Teide–Pico Viejo Succession 160
 9.4.1 Mafic Lavas 160
 9.4.2 Transitional Lavas 162
 9.4.3 Felsic Lavas 162
9.5 Trace Element Characterisation of the Teide–Pico Viejo Succession 164
9.6 Volumetric and Spatio-Chronological Characterisation of the Teide–Pico Viejo Succession 167
References ... 169

10 Magmatic Differentiation in the Teide–Pico Viejo Succession: Isotope Analysis as a Key to Deciphering the Origin of Phonolite Magma .. 173
10.1 Introduction ... 174
10.2 The Application of Radiogenic Isotopes in Igneous Petrology 174
10.3 Previous Work and Research Techniques ... 175
10.4 Sr-Nd–Pb–O Systematics at Teide-Pico Viejo .. 176
10.5 Discussion ... 177
 10.5.1 Sediment Contamination? .. 177
 10.5.2 Constraints on the Assimilant ... 178
 10.5.3 Heterogeneous Oxygen Isotope Composition of the Assimilant 181
 10.5.4 Bulk Melting of Country Rock ... 181
 10.5.5 Quantification of Differentiation Processes at Teide–Pico Viejo 182
 10.5.6 Mechanisms for Crustal Melting ... 183
10.6 Petrogenesis at Teide–Pico Viejo .. 187
References ... 188

11 Magma Mixing in the 1100 AD Montaña Reventada Composite Lava Flow: Interaction of Rift Zone and Central Complex Magmatism 191
11.1 Introduction ... 192
11.2 The Montaña Reventada Lava Flow .. 193
11.3 Research Techniques 194
14.3 Volcanic Hazards in the TVC 257
14.4 Lava Flow Hazards .. 257
14.5 Hazard Maps .. 259
14.6 Topographic Control on Lava Flow Paths
 and Lava Inundation ... 262
 14.6.1 Inundation by a Potential Eruption Close
 to the 1706 Garachico Event 263
 14.6.2 Overflow of the Las Cañadas Caldera 263
14.7 Hazards Related to Felsic Volcanism in the TVC 264
14.8 Ground Deformation Hazards 266
14.9 The Present State of the TVC Plumbing System 267
14.10 The Present Risk Mitigation Challenge 268
References ... 270

Author Biographies ... 273

Index ... 275
Teide Volcano
Geology and Eruptions of a Highly Differentiated Oceanic Stratovolcano
Carracedo, J.C.; Troll, V.R. (Eds.)
2013, XIV, 279 p. 234 illus., 222 illus. in color., Hardcover
ISBN: 978-3-642-25892-3