CHAPTER 4
Gaussian Perturbations of Dynamical Systems. Neighborhood of an Equilibrium Point ... 85
1 Action Functional .. 85
2 The Problem of Exit from a Domain 89
3 Properties of the Quasipotential. Examples 100
4 Asymptotics of the Mean Exit Time and Invariant Measure 105
5 Gaussian Perturbations of General Form 114

CHAPTER 5
Perturbations Leading to Markov Processes 117
1 Legendre Transformation ... 117
2 Locally Infinitely Divisible Processes 124
3 Special Cases. Generalizations 134
4 Consequences. Generalization of Results of Chap. 4 137

CHAPTER 6
Markov Perturbations on Large Time Intervals 142
1 Auxiliary Results. Equivalence Relation 142
2 Markov Chains Connected with the Process \((X^ε_t, P^ε_x)\) 150
3 Lemmas on Markov Chains .. 157
4 The Problem of the Invariant Measure 165
5 The Problem of Exit from a Domain 172
6 Decomposition into Cycles. Metastability 178
7 Eigenvalue Problems .. 184

CHAPTER 7
The Averaging Principle. Fluctuations in Dynamical Systems with Averaging ... 192
1 The Averaging Principle in the Theory of Ordinary Differential
Equations ... 192
2 The Averaging Principle when the Fast Motion is a Random Process . 196
3 Normal Deviations from an Averaged System 198
4 Large Deviations from an Averaged System 212
5 Large Deviations Continued .. 219
6 The Behavior of the System on Large Time Intervals 226
7 Not Very Large Deviations ... 230
8 Examples .. 235
9 The Averaging Principle for Stochastic Differential Equations . 244

CHAPTER 8
Random Perturbations of Hamiltonian Systems 258
1 Introduction ... 258
2 Main Results .. 269
3 Proof of Theorem 2.2 .. 275
Random Perturbations of Dynamical Systems
Freidlin, M.I.; Wentzell, A.D.
2012, XXVIII, 460 p., Hardcover
ISBN: 978-3-642-25846-6